4x10 = 40

Total Pages: 3

PG CBCS M.Sc. Semester-III Examination, 2020 CHEMISTRY PAPER: CEM 302 (INORGANIC SPECIAL)

Full Marks: 40	Time: 2 Hours

Answer any <u>four</u> questions from the following:

- 1. (a) What do you mean by insertion reaction and oxidative coupling?
- (b) Why do the configuration dⁿ and d¹⁰⁻ⁿ give identical ligands field term in any given field symmetry?
 - (c) What is the hole formalism?
 - (d) Write some advantages of rhodium catalyst over cobalt catalyst for hydroformylation reaction. 2.5×4
- 2. (a) What do you mean by 'Exclusion rule'?
 - (b) What is "Sandwich compound"? Give an example.
 - (c) What is the role of hydroiodic acid in Monsento process of acetic acid synthesis?

(d)Show that the f-orbital whose angular wave functions is constant times $Sin^2\theta Cos\theta Sin 2\Phi$ is f_{xyz} orbital. 2.5×4

3. (a) How will you synthesize $Ph \xrightarrow{Ph} O \xrightarrow{Br} N_i$

via dehalogenation of cyclopropene starting from Ni(CO)₄.

(b) Complete the following reaction:

(c) The addition of PPh3to RhCl(PPh3)3reduces the hydrogenation TOF(Turn over frequency).-Justify.

- 4. (a) Briefly discuss the catalytic cycle for 'Monsento acetic acid' process using [Rh(CO)₂I₂]⁻ catalyst. Mention oxidation states of 'Ru' in each step.
 - (b) Write down the catalytic cycle for the hydroformylation reaction using $HCo(CO)_4$ as catalyst.
 - (c) Establish the relation: Where the terms $\chi(\alpha) = \frac{Sin(l + \frac{1}{2})\alpha}{Sin(\frac{\alpha}{2})}$ have usual significance. 4+3+3
- 5. (a) Show that the d-orbital whose angular wave function is constant times $(\sin^2\theta \cos 2\theta)$ is $d_{x y}^2$ orbital.
 - (b) State the spectral selection rules of the electronic dipole transition of the vibrationl modes of IR and Raman active molecules.2
 - (c) Find out the ground and excited state terms for d² free ion. Use Hund's rule to identify the ground state.
 - (d) Predict the product of the following reaction:

6. Find out IR and Raman active vibrational modes of NH₃ molecule. Character table for C_{3v} point group is given below.
 10

C_{3v}	E	$2C_3$	$3\sigma_v$	Basis component	nts
A_1	1	1	1	Ζ	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
Ε	2	-1	0	$(x,y) \qquad (R_x,R_y)$	$(x^2 - y^2, xy)(yz, xz)$

- Write down the complete reaction for the production of CH₃CHO from C₂H₄ by Wacker's process. Write down the rate equation for the process. Draw the catalytic cycle for the process.
 3+3+4
- 8. What is Ziegler-Natta catalyst? Mechanistically explain the stereo regularity of polymerization of olefin with this catalyst.3+7

1 + 1

9. What is projection operator? Find the SALCs of cyclopropenyl cation using projection operator technique and draw the energy level diagram. 1+6+1

D _{3h}	E	2 C ₃	3 C ₂ '	σ_{h}	2 S ₃	3 σ _v		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A2'	1	1	-1	1	1	-1	Rz	
E′	2	-1	0	2	-1	0	(x, y)	(x ² – y ² , xy)
A1"	1	1	1	-1	-1	-1		
A2"	1	1	-1	-1	-1	1	z	
Ε″	2	-1	0	-2	1	0	(R _x , R _v)	(xz, yz)

Character table for D_{3h} point group is given below.

10. Draw the correlation diagram of d^2 configuration in octahedral complexes. Character table for O_h point group is given below. 10

Oh	Е	8C3	6C2	6C4	3C2	i	6S4	8S6	$3\sigma_{\rm h}$	6σd		
A1a	1	1	1	1	1	1	1	1	1	1		x ² +y ² +z ²
A2a	1	1	-1	-1	1	1	-1	1	1	-1		
Ea	2	-1	0	0	2	2	0	1	2	0		2z ² -x ² -y ² ,x ² -y ²
Tľa	3	0	-1	1	-1	3	1	0	-1	-1	$R_{x}R_{y}R_{z}$	
T ₂ a	3	0	1	-1	-1	3	-1	0	-1	1	,	xz,yz,xy
A1u	1	1	1	1	1	-1	-1	-1	-1	-1		
A2u	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T1u	3	0	-1	1	-1	-3	-1	0	1	1	x,y,z	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

(3)
