PG (CBCS)
 M.Sc. Semester-II Examination, 2020
 CHEMISTRY
 PAPER: CEM-203
 (INORGANIC CHEMISTRY - II)

Full Marks: 20

Time: 1 Hour

Answer any $\underline{t w o}$ questions of the following:

1. Any two of the following:
(a) Write down the four important principles to construct the character table for a point group of symmetry.
(b) NMR-spectroscopy is a useful technique to monitor fluxional behaviour - Justify.
(c) What do you mean by 'Agostic interaction'?
(d) Draw the orbital overlap diagram in Schrock's carbine complex.
2. Any two of the following:
(a) What do you mean by Berry pseudo rotation?
(b) Show the different bonding modes of dinitrogen in dinuclear transition metal-dinitrogen complexs.
(c) Why do square planer complexes sometimes violate 18-electron rule?

Explain with an example.
(d) The structure of cyclobutadiene itself is rectangular, while it is close to square in the coordination compound - comment.
3. (a) How do transition metal orbitals interact with the molecular orbitals of an allyl ligand?
(b) What is Creutz-Taube complex? Why was the chemistry of these complexes studied?
4. (a) Discuss the phenomenon of 'Carbonyl scrambling' in $\left[\mathrm{FeCp}(\mathrm{CO})_{2}\right]_{2}$ complex.
(b) Calculate the styx number of $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{-2}$.
5. (a) What is boron neutron capture therapy? Give at least two examples of $1^{\text {st }}$ and $2^{\text {nd }}$ generation BNCT AGENTS.
(b) Write the products of each of following reactions;
(i) $\mathrm{RhCl}_{3}+\mathrm{C}_{2} \mathrm{H}_{4} \xrightarrow{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}}$?
(ii) $\mathrm{HCo}(\mathrm{CO})_{4}+\longrightarrow$?
(iii) $\mathrm{Cr}(\mathrm{CO})_{6}+\mathrm{PhLi} \longrightarrow$?
(iv) $\left[\mathrm{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{C}_{60} \longrightarrow\right.$?
6. (a) The change of CO stretching frequency in the IR spectrum of compound (1) and (2) given below:
$\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$

$$
\begin{aligned}
& \overline{\mathrm{v}}_{C O}: 1967 \mathrm{~cm}^{-1} \\
& \overline{\mathrm{v}}_{C O}: 2075 \mathrm{~cm}^{-1}
\end{aligned}
$$

Why does the position of $\overline{\mathrm{v}}_{C O}$ in the IR spectrum shift?
(b) Write the products of each of following reactions;
(i)

Where

(ii) $\mathrm{RuCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \xrightarrow{\text { (ii) } \mathrm{N}_{2} \mathrm{H}_{4} / \mathrm{H}_{2} \mathrm{O}}$ (iCl, $25^{\circ} \mathrm{C}$?
(iii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \xrightarrow[\text { (ii) } \mathrm{CH}_{3} \mathrm{COOH}]{\text { (i) } \mathrm{AgNO}_{3}}$?
(iv) $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$

