PG CBCS M.Sc. Semester-I, Examination, 2020 CHEMISTRY PAPER: CEM 103 (INORGANIC CHEMISTRY-I)

Full Marks: 40

Time: 2 Hours

Answer any <u>four</u> questions from the following: $[4 \times 10] = 40$

- (a) Derive the expression for relation between interplanar distance and Miller indices
 (b) The lattice constant of a cubic crystals is 2.25 Å. Find the interplanar spacing of a set of crystallographic plane having miller indices (100). [5+5]
- 2. (a) Deduce the expression for the Braggs diffraction in terms for reciprocal lattice.
 (b) For a hexagonal lattice, the three sides are 10 Å, 10 Å and 15 Å. Calculate the volume of the lattice. [5+5]
- 3. State the meaning and draw stereographic projections of the following point groups.

(i)	4mm
(1)	

- (ii) 6/m mm
- (iii) 4/m mm
- (iv) 23

4. (a) Derive the matrix form $C_n(x)$ symmetry element. [4+4+2]

- (b) Prove that, $S_2=i$ with the help of corresponding matrices.
- (c) What are the symmetry criteria for a molecule to be optically active?
- 5. (a) Assign the point group to the following molecules and ions:

(i) ClF_3 ; (ii) B_2H_6 ; (iii) cis- $[Co(en)_2Cl_2]^+$, (iv) $Be(C_2O_4)_2^{2-1}$

(b) Work out the product of the following elements in C_{3v} point group:

$$\sigma_v "C_3^1 \sigma_v$$
 and $\sigma_v C_3^2 \sigma_v$

(c) Construct the 'group multiplication table' for H_2O molecule. [4+4+2]

- 6. (a) Find the inverse of S_n^{m} operation when
 - (i) n is even and m is odd
 - (ii) n is odd and m is even
 - (b) Write down the 'Hermann-Mauguin notation' for the following point groups:

$$D_2$$
, C_{3v}

- (c) Write the closure rule for the construction of point group of a molecule.
- 7. (a) What are the essential criteria for a collection of entities must have to form a group?
 - (b) What do you mean by 'Abelian group'? Give an example.
 - (c) Derive the matrix representation of vertical planes in NH_3 molecule.

[5 x 2.5]

[1x10]

- 8. Answer the following questions:
 - (a) What is methemoglobin?
 - (b) Give an example of a naturally occurring M-C □-bonded species
 - (c) Name two Zn containing enzymes
 - (d) Draw the structure of two common amino acids.
 - (e) What are the different peroxo binding modes in dinuclear metal complexes?
 - (f) State the role of Superoxide Dismutase enzyme
 - (g) What are ionophores?
 - (h) What are the different iron Sulphur proteins?
 - (i) Draw the structure of rubredoxin.
 - (j) State and explain briefly the magnetic property of oxyhemocyanin.

9. (a) What is the nature of the dioxygen binding site in Hemoglobin? Explain how p is also involved in the binding of oxygen.	rotein part [4]
(b) Draw the structure of a non-heme iron protein and explain its function.	[4]
(c) Explain Bohr effect for the binding and release of oxygen in hemoglobin.	[2]
10. (a) State and explain the binding features of oxygen in hemocyanin. Write the type spectroscopic features observed in oxyhemocyanin and correlate with its struct	pical ture. [4]
(b) Write the structural integrity of Ferritin and state its significance.	[4]
(c) Describe the major role of Hepicidine in the regulation of iron transport.	[2]