Total Pages: 5

B.Sc./5th Sem (H)/PHS/23(CBCS)

2023

5th Semester Examination PHYSICS (Honours)

Paper: C 11-T

[Quantum Mechanics and Applications]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Attempt any five questions:

 $2 \times 5 = 10$

ESTD 201

1. At time t = 0, a particle is represented by the wave function:

$$\varphi(x,0) = A(x/a), 0 \le x \le a$$

$$= A(b-x)/(b-a), a \le x \le b$$

$$= 0, \text{ otherwise}$$

Find the value of A.

2

P.T.O.

V-5/53 - 1200

2. Can the following function f(x) be considered as a wave function?

 $[f(x)]^2 = 4x \exp(-x)$

Explain

 \mathcal{F} . Show that the operator (d/dx) can have only imaginary eigenvalues

4. Suppose wave function of a particle is given by in momentum space $\varphi(x) = Ae^{\frac{x^{n}}{h}}$. Find out the corresponding wave function

5. What is zero-point energy? Why can't it be zero?

6 Consider three bosons inside an infinite 1-D potential well ground state and 1st excited state. of dimension "a". Write down the wave function for the

7. What was the conclusion of Stern-Gerlach experiment?

8. The state space of a system is described by the $|e_2 \sim e_2|$), where k is a real constant. Find the eigenvalues operator : $A = k(|e_1| < |e_1| - i|e_1| < |e_2| + i|e_2| < |e_1|)$ orthonormal basis vectors $|e_1\rangle$ and $|e_2\rangle$. Consider the

Group - B

Attempt any four questions:

 $5 \times 4 = 20$

9. What do you mean by spin-orbit coupling? Find out the Lande g-factor for ${}^{3}P_{2}$. What is the main difference

ယ)

momentum? between orbital angular momentum and spin angular

10. Consider a system whose wave function is given by:

$$\Psi(x,0) = \frac{5}{\sqrt{50}} \phi_0(x) + \frac{4}{\sqrt{50}} \phi_1(x) + \frac{3}{\sqrt{50}} \phi_2(x)$$

a harmonic oscillator. Find the average energy of the system and expected number of energy quanta present where $\phi_n(x)$'s are the eighenfunction of Hamiltonian for

11. Find the eigenvalues and eigenstates of the component of unit vector \hat{n} , assume \hat{n} lies in the XZ-plane. 5 of the spin operator \hat{S} of an electron along the direction

12. Prove that, $\hat{L}_{\pm} | l, m >= \hbar \sqrt{l(l+1)} - m(m\pm 1) | l, m\pm 1 >$ Using this relation, find out expectation value of $L_{\scriptscriptstyle +}$ for

 $\frac{1}{\sqrt{5}}Y_{20} + \sqrt{\frac{2}{5}}(Y_{2,-1} - Y_{2,1})$

MIDA ESTD 2017

13. Explain how Sodium D_1 line $(3^2P_{1/2} \rightarrow 3^2S_{1/2})$ and D_2 line $(3^2P_{3/2} \rightarrow 3^2S_{1/2})$ split into four and six components respectively under anomalous Zeeman effect

2/2 2/2

V-5/53 - 1200

14. (a) Consider the wave function $\Psi(x) = Axe^{-\frac{mox^2}{2\hbar}}$

corresponding to the potential $V(x) = \frac{m\omega^2 x^2}{2}$

(i) Find the normalization constant.

(ii) Find the probability of finding the particle in the classically forbidden region in this state.

[Hint:
$$\frac{2}{\sqrt{\pi}} \int_0^1 u^2 e^{-u^2} du = 0.214$$
]

(b) Find the term symbol of Nitrogen Atom.

Group - C

Attempt any one question:

 $10 \times 1 = 10$

15. Consider a particle of mass m moving in a onedimensional harmonic oscillator potential.

(a) Define
$$\hat{a} = \frac{1}{\sqrt{2m\hbar\omega}} [m\omega\hat{x} + i\hat{p}]$$
 and

 $\hat{a}^{\dagger} = \frac{1}{\sqrt{2m\hbar\omega}} \left[m\omega \hat{x} - i\hat{p} \right].$

Find the commutation relation between a and a^{\dagger} .

(b) Express Hamiltonian of LHO in terms of above two operators

(c) Prove that,

$$\hat{a} | n \ge = \sqrt{n} | n - 1 > \hat{a}^{\dagger} | n \ge = \sqrt{(n+1)} | n + 1 >$$

- (d) Calculate the uncertainty product for position and ground state? Comment. momentum operator in the 5th excited state, i.e. n = 5. Is it larger or smaller than that for the
- 16. Consider a hydrogen atom which is in its ground state; the ground state wave function is given by : $\Psi(r, \theta, \varphi) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$, where a_0 is the Bohr radius,
- (a) Find out the most probable distance between the electron and proton.

(b) Find out the average distance between the electron and proton.

(c) How many degenerate states are there for n = 3state of hydrogen atom? Write down all the degenerate states in $|n, l, m\rangle$ notation. 1+3