## B.Sc./4th Sem (H)/MATH/23(CBCS)

## 2023

## 4th Semester Examination MATHEMATICS (Honours)

Paper: GE 4-T

[CBCS]

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

## [Numerical Methods]

Full Marks: 40

Time: Two Hours

1. Answer any five of the following;

2×5=10

- (a) Explain the principle of propagation of error and how it effects the numerical computation.
- (b) If  $f(x) = 4 \cos x 6x$ , find the relative percentage error in f(x) for x = 0 if the error in x is 0.005.
- (c) What are the advantages and disadvantages for Lagrange interpolation method?
- (d) Compute the value of  $\sqrt{2}$  correct up to three significant figure using Newton Raphson method.
- (e) If f(1) = 3, f(2) = 7, f(3) = 13 then find the value of f'(1).

P.T.O.

V-4/52 - 1100

( 2 )

(f) Find the value of the integral  $\int_{0}^{1} \frac{\ln(1+x)}{x} dx$  with

step length 0.5 by Simpson's 1/3 rule.

- (g) Show that  $\Delta \log f(x) = \log \left[ 1 + \frac{\Delta f(x)}{f(x)} \right]$ .
- (h) Discuss the geometrical interpretation of trapezoidal rule for numerical integration.
- 2. Answer any four from the following:

 $5 \times 4 = 20$ 

(a) Obtain the function f(x) as a polynomial in x using the following table:

| 49 | 29  | 17 | 10 | 5 | 1 | f(x) |
|----|-----|----|----|---|---|------|
| 10 | 000 | 6  | 4  | 2 | C | ×    |

- (b) Compute y(1.0) from  $\frac{dy}{dx} = x^2 + y$  with y(0) = 1 taking h = 0.2, using Euler's method.
- (c) Determine the largest (in magnitude) eigen value of the matrix given as follows using power method:

$$A = \begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$$

- ( 3
- (d) Find the real root of  $x^3 x 1 = 0$  using bisection method.
- (e) Discuss Gauss-Seidal Iteration Scheme for solving the system of linear equations with the sufficient conditions of convergent.
- (f) Describe the Newton-Raphson Method for finding the simple root of an equation f(x) = 0.
- 3. Answer any one of the following:

10×1=10

(a) Solve the following system of equations by LU decomposition method:

$$2x-3y+4z=8$$
;  $x+y+4z=15$ ;  $3x+4y-z=8$ 

(b) Discuss the Newton's Backward interpolation formula and using it find a polynomial which takes the following values:

| y  | × |
|----|---|
| 41 | 0 |
| 43 | - |
| 47 | 2 |
| 53 | ယ |
| 61 | 4 |
| 71 | 2 |



( 4 )

OR

# [Partial Differential Equations and Applications]

1. Answer any ten questions:

Full Marks: 60

Time: Three Hours

(c) Define control forms and

2×10=20

- (a) Define central force and centre of force.
- (b) Form a PDE by eliminating the function f from

$$z = xf\left(\frac{y}{x}\right)$$

- (c) Prove the relation pv = h, the symbols have their usual meaning.
- (d) A particle describes the curve  $p^2 = ar$  under a force F to the pole. Find the law of force.
- (e) A particle describes a curve  $s = c \tan \psi$  with uniform speed  $\nu$ . Find the acceleration indicating its direction.
- (f) Show that u = f(x) g(x), where f and g are arbitrary twice differentiable functions, satisfies  $u u_{xy} u_x u_y = 0$ .
- (g) Write down the characteristic equation of the differential equation  $u(x+y)u_x+u(x-y)u_y$  $=x^2+y^2.$



ESTD 2017 ) 8

(h) Find the general solution of the

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial v^2} = 0.$$

- (i) Find a PDE of  $\phi(u, v) = 0$  where u = x + y + z,  $v = x^2 + y^2 + z^2$ .
- (j) Define quasilinear PDE and give an example of quasilinear PDE.
- (k) Form the PDE by eliminating the arbitrary constants a and b from the equation  $z = ax + a^2y^2 + b$ .

(1) Classify the PDE 
$$(1-K^2)\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0, K > 1.$$

- (m) State Kepler's law for planetory motion.
- (n) Write down the equations of motion of a particle moving along a smooth plane curve under the action of a force.
- (o) Find the particular integral of

$$(D^2 - 2DD' + D'^2)z = \cos(x - 3y).$$

2. Answer any four questions:

5×4=2(

(a) A particle moves in a plane with an acceleration always directed towards to a fixed-point O in the

0

plane. Prove that the differential equation of the  $d^2u$  F where u=1 and F is

path is  $\frac{d^2u}{d\theta^2} + u = \frac{F}{h^2u^2}$ , where  $u = \frac{1}{r}$  and F is the acceleration.

- (b) Find the integral surface of the linear partial differential equation  $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$  which contains the straight line x+y=0, z=1.
- (c) Solve the differential equation  $z = px + qy + p^2 + q^2$  by Charpits method.
- (d) Transform the equation  $\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$  in equivalent canonical form and hence solve it.
- (e) The temperature at one end of a bar 100 cm long with insulated sides is kept at 0°C and other end at 100°C until steady state condition prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.
- (f) A curve is described by a particle having a constant acceleration in a direction inclined at a constant angle to the tangent. Show that the curve is an equiangular spiral.

## 3. Answer any two questions:



- (a) Derive one dimensional wave equation and solve it by canonical reduction.
- (b) Solve the heat conduction problem

$$u_t = ku_{xx}, 0 < x < l, t > 0$$
  
 $u(0, t) = 0, t \ge 0$   
 $u(l, t) = 0, t \ge 0$   
 $u(x, 0) = f(x), 0 \le x \le l$ 

(c) (i) Find the PDE of the family of cones whose vertex is the origin and base is the curve

$$x = a$$
,  $\left(\frac{y}{a}\right)^2 + z^2 = b^2$  where  $a$ ,  $b$  are arbitrary constants.

- (ii) Prove that the partical differential equation  $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2} \text{ reduces to } \frac{\partial^2 z}{\partial u \partial v} = 0 \text{ by the transformation } u = x ct, \ v = x + ct.$  6+4
- (i) Find the integral surface of the linear partial differential equation  $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$  which contains the straight line x+y=0, z=1.

(ii) Solve: 
$$(D^2 + 3DD' + 2D'^2)z = 2x^2 + 3y$$
. 6+4



## [Ring Theory and Linear Algebra - I]

Time: Three Hours

1. Answer any ten questions:

2×10=20

(a) Give an example of a finite ring R with unity  $I_R$  and a subring S of R with unity  $I_S$  such that  $I_R \neq I_S$ 

- (b) Let  $(R, +, \cdot)$  be a ring where the group (R, +) is cyclic. Show that the given ring is commutative
- (c) Let R be a ring having no zero divisors. Show that if every subring of R is an ideal of R then R is commutative.
- (d) Show that a non zero element 'a' in  $Z_n$  is a unit if 'a' is not a unit then it is a zero divisor iff 'a' and 'n' are relatively prime. Also show that
- (e) Prove that in a ring R if 'a' is an idempotent element then 1-a is also idempotent
- (f) Examine whether {0, 2, 4, 6, 8} under addition and multiplication modulo 10 is a ring with unity
- (g) Give an example (with reason) of a left ideal of a ring which is not a right ideal.
- (h) Define maximal ideal in a Ring. Give its example
- (i) Find all the ring homomorphisms from  $Z_{20} \rightarrow Z_{30}$

ESTD 2017 ) 8

- (j) Prove that Z and  $Z \times Z$  are not isomorphic mallies
- (k) Show that the set  $S = \{\sin x, \cos x, \sin(x+1)\}$  is linearly dependent.
- (1) Find the co-ordinate vector of the vector (2, 3, 3) with respect to the basis  $B = \{(2, 1, 1), (1, 2, 1),$
- (m) Define rank and nullity of a linear transformation.
- (n) Is  $T: \mathbb{R}^3 \to \mathbb{R}^3$  defined by  $T(x_1, x_2, x_3) =$  $(x_1+1, x_2+1, x_3+1)$  a linear transformation?
- (o) Find ker T of the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}$ defined by T(x, y, z) = x + y + z,  $(x, y, z) \in R^3$ .
- 2. Answer any four questions:
- (a) Prove that a finite Integral Domain is a field.
- (b) Show that the ring of matrices of the form  $\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$  contains no divisor of zero if  $a, b \in \mathbb{Q}$
- but contains divisor of zero if  $a, b \in \mathbb{R}$ .

S

(c) Let  $R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}$  and  $\phi : R \to \mathbb{Z}$  is

V-4/52 - 1100

( 10 )

defined by  $\phi\begin{pmatrix} a & b \\ b & a \end{pmatrix} = a - b$ . Show that  $\phi$  is a

ring homomorphism. Determine  $\ker \phi$ . Show that  $R/\ker \phi \cong Z$ .

(d) Prove that a vector space V can not be represented as the union of two proper subspaces.

(e) Find the basis and dimension of the subspace S of  $\mathbb{R}^3$  defined by  $S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y - z = 0\}.$ 

(f) Let  $T : \mathbb{R}_{2\times 2} \to \mathbb{R}_{2\times 2}$  such that  $T(A) = \frac{1}{2}(A + A^T)$ ,  $A \in \mathbb{R}_{2\times 2}$ . Show that T is a linear mapping. Also find ker T, Im T, rank and nullity of T.

1+1+1+1+

10×2=20

3. Answer any two questions:

(a) (i) The matrix of a linear mapping  $T: \mathbb{R}^3 \to \mathbb{R}^2$  relative to the order bases  $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$  of  $\mathbb{R}^3$  and  $\{(1, 0), (0, 1)\}$  of  $\mathbb{R}^2$ 

is  $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$ . Find the matrix of T relative to the order bases  $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$  of  $\mathbb{R}^3$  and  $\{(1, 3), (2, 5)\}$  of  $\mathbb{R}^2$ .

( I

(ii) A linear mapping  $T: R^3 \to R^3$  is defined by T(x, y, z) = (x - y, x + 2y, y + 3z),  $(x, y, z) \in R^3$ . Show that T is non-singular and determine  $T^{-1}$ .

- b) (i) Prove that any linearly independent set of n vectors of n dimensional vector space V is a basis of V.
- (ii) Extend the set  $\{(1, 1, 1, 1), (1, -1, 1, -1)\}$  to a basis of  $\mathbb{R}^4$ .
- (iii) Prove that if W is a subspace of V then L(W) = W and conversely.
- (c) State and prove Fundamental theorem of Ringhomomorphism. Let  $\phi: \mathbb{Z} \to \mathbb{Z}_5$  be defined by  $\phi(x) = \overline{x} \pmod{5}$  for  $x \in \mathbb{Z}$ . Show that  $\phi$  is an onto homomorphism. Prove that  $\mathbb{Z}/\ker \phi = \mathbb{Z}_5$ .
- (d) (i) Let X be a non empty set. Then show that P(X), the power set of X, forms a commutative ring with unity under + and  $\cdot$  defined by  $A+B=(A\cup B)-(A\cap B)$ ,  $A\cdot B=A\cap B$ .
- (ii) Prove that in a commutative ring with unity, every maximal ideal is a prime ideal. Is the converse true? Justify.



## [Multivariate Calculus]

Full Marks: 60

Time: Three Hours

1. Answer any ten questions:

(a) The function  $f(x, y) = 3x + 12y - x^3 - y^3$  has two saddle points. Is the statement true? Justify

(b) Find the surface area of the part of the surface  $z = x^2 + y^2$  below the plane z = 9.

(c) Find the following limit, if it exists, or show that the limit does not exist

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy + y^2}{x^2 + y^2}$$

(d) Find the directional derivative of the function f(x, y, z) = xyz in the direction of vector v = < 5

(e) Find the Jacobian of the transformation  $x = u^2 - v^2$ ,

(f) Suppose the vector field F = yi + (x + z)j +(y+2z) k is conservative. Find a potential function

(g) An object moves along the line segment from

( 13 )

ESTD 2017

(0, 0, 0) to (3, 6, 10), subject to the force  $F = (x^2, y^2, z^2)$ . Find the work done

(h) State and prove the Fundamental Theorem of Calculus for Line Integrals.

(i) Find a double integral equal to the volume of the solid bounded by the surfaces y = x, x = 2, z = 0and z = y. Note that you do not need to evaluate it.

(j) What is a homogeneous function of two variables? Give an example with justification.

(k) State sufficient condition for differentiability of a function f(x, y) at a point (a, b).

(1) Evaluate  $\int_0^{\pi} \int_0^x \sin y \, dy \, dx$ .

(m) For what values of x the vector field  $\vec{F} = (x^2\hat{i} + 2y\hat{j} + 3z\hat{k})$  is solenoidal?

(n) State the Gauss's Divergence theorem.

(o) Find the equation of the tangent plane to the surface xyz = 4 at the point (1, 2, 2).

2. Answer any four questions:

(a) Find the tangent plane and normal line to

$$e^{xy^2} + zy^4 = 60 + \frac{z^2}{x+1}$$
 at  $(0, -2, 8)$ .

- (b) Find the volume enclosed between a sphere of of half angle  $\alpha$  with its vertex at the origin. radius 'a' centred on the origin, and a circular cone
- (c) Show that the necessary and sufficient condition for a proper vector  $\vec{u}$  has a constant length is that
- (d) State Euler's theorem on homogeneous function in two variables and use it to show that if

$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
 then prove  
 $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ .

that

(e) Changing the order of integration, show that

$$\int_0^1 dx \int_x^{\frac{1}{2}} \frac{y dy}{(1+xy)^2 (1+y^2)} = \frac{\pi - 1}{4}.$$

(f) Find the total work done in moving a particle in a force field given by

$$\vec{F} = (2x - y + z)\hat{i} + (x + y - z)\hat{j} + (3x - 2y - 5z)\hat{k},$$

along a circle C in the xy-plane  $x^2 + y^2 = 9$ , z = 0.

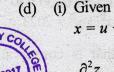
3. Answer any two questions:

(a) (i) Use Lagrange Multipliers to find the maximum

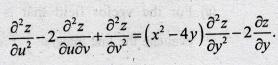
S ESTD 2017

and minimum values of z = f(x, y) = 4x + 64subject to the constant  $x^2 + y^2 = 2023$ 

- (ii) For the vector field that is conservative, evaluate the line integral  $\int_C \vec{F} \cdot d\vec{r}$ , where C is any curve from (0, 0) to (0, 1).
- (i) Your steel company produces steel boxes at company is to produce 100 units annually.  $S(x, y, z) = 8xyz^2 - 200(x + y + z)$ . The respectively, producing an annual revenue of maximize revenue? How should production be distributed to three different plants in amounts x, y and z,
- (ii) State the Green's theorem and use it to evaluate the line integral  $\int_C (1+xy^2) dx - x^2 y dy$  where C consists of to (1, 1). the arc of the parabola  $y = x^2$  from (-1, 1)
- (c) (i) Verify the divergence theorem for  $\iint_S x^2 z^2 dS$ , where S be the surface of the sphere  $x^2 + y^2 + z^2 = 2023^2$ .
- (ii) Show that the following integral is independent of the path  $\int_{(1,0)}^{(3,2)} \left[ x + 2y dx + (2x - y) dy \right]$ .



(i) Given that z is a function of x and y and that x = u + v, y = u v, prove that



(ii) Evaluate  $\iiint 2x \, dv$  over the region 2x + 3y + z = 6 that lies in the first octant.

6+4



(i) Given that z is a function of x and y and that x = u + v, y = u v, prove that

$$\frac{\partial^2 z}{\partial u^2} - 2 \frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2} = \left(x^2 - 4y\right) \frac{\partial^2 z}{\partial y^2} - 2 \frac{\partial z}{\partial y}.$$

(ii) Evaluate  $\iiint 2x \, dv$  over the region 2x + 3y + z = 6 that lies in the first octant.

6+4