2023

5th Semester Examination MATHEMATICS (Honours)

Paper: DSE 1-T

[CBCS]

Full Marks: 60

Time: Three Hours.

E810 20

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

[Linear Programming]

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Give three limitations of a linear programming problem.
- (b) Find the possible number of basic solutions in a system of m equations in n unknowns.
- (c) Show that $X = \{x : |x| \le 2\}$ is a convex set.
- (d) Prove that dual of the dual is the primal.
 - (e) Prove that the solution of the transportation problem has always a solution.

P.T.O.

V-5/43 - 1500

- (f) Write the basic difference of transportation and assignment problems.
- (g) Show that whatever may be the value of a, the game with the following payoff matrix is strictly determinable:

(h) In the following equations find the basic solution with x_3 as the non-basic solution

$$x_1 + 4x_2 - x_3 = 3$$

 $5x_1 + 2x_2 + 3x_3 = 4$.

- (i) Extreme points of a convex set are its boundary points. Is the converse true? Justify.
- (j) What is simplex? Give an example of a simplex in 3-dimension.
- (k) State fundamental theorem of an L.P.P.
- (f) State the weak duality theorem of an L.P.P.
- (m) Distinguish between a regular simplex method and a dual simplex method.
- (n) What do you mean by two-person zero sum game and its value?

(e) Prove that the number of basic variables in a transportation problem with m origins and n destinations is atmost m+n-1.

Group - B

2. Answer any four questions:

5×4=20

- (a) Show that if any variable of the primal problem be unrestricted in sign, then the corresponding constraint of the dual will be an equality.
- (b) Solve the following L.P.P.

Max
$$Z = 2x_1 + 3x_2 + x_3$$

sub to $-3x_1 + 2x_2 + 3x_3 = 8$
 $-3x_1 + 4x_2 + 2x_3 = 7$

 $x_1, x_2, x_3 \ge 0$

(c) Use dominance to reduce the payoff matrix and solve the following game problem given by the payoff matrix:

	A .		
0	6	1	
	2	7	В
. 6	7	2	

V-5/43 - 1500

(4)

(d) Prove that, every extreme point of the convex set of all feasible solutions of the system

$$Ax = b, x \ge 0$$

corresponds to a basic feasible solution.

(e) Solve the following L.P.P. by two-phase simplex method:

$$Maximize Z = 2x_1 + x_2 + x_3$$

Subject to
$$4x_1 + 6x_2 + 3x_3 \le 8$$

$$3x_1 - 6x_2 - 4x_3 \le 1$$
$$2x_1 + 3x_2 - 5x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0.$$

(f) Solve the following travelling salesman problem:

ַם	C	B	>	
ω	7	4	8	>
w	6	8	4	В
7	8	6	7	C
8	7	3	3	D

(5)

Group - C

3. Answer any two questions:

10×2=20

(a) (i) Solve the following transportation problem:

(ii) Determine the position of the point (1, -2, 3, 4) relative to the hyperplane

50

80

80

$$4x_1 + 6x_2 + 2x_3 + x_4 = 2.$$
 8+2

(b) (i) Solve the following problem by two-phase method

Max
$$Z = 5x_1 + 3x_2$$

sub to $2x_1 + x_2 \le 1$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$.

(ii) Is assignment problem a Linear programming problem? Justify.

P.T.O.

(c) Give the dual of the following LPP and hence solve it:

Max
$$Z = 3x_1 - 2x_2$$

 $x_1 \leq 4$

 $x_2 \leq 6$

 $x_1 + x_2 \leq 5$

 $-x_2 \le -1$

 $x_1, x_2 \ge 0.$

10

<u>a</u> (i) If an L.P.P. has an optimal solution, then show that atleast one B.F.S. must be optimal

(ii) Solve graphically the following L.P.P. Maximize $Z = -x_1 + x_2$

Subject to $5x_1 + 6x_2 \ge 30$ $9x_1 - 2x_2 = 72$

Also find its redundant constraint. 5+(4+1)

[Point Set Topology]

Group - A

1. Answer any ten questions:

2×10=20

(a) Prove that $Fr(A) = \Phi$ if and only if A is both open and closed set.

(b) If every countable subset of X is closed, is the topology necessarily discrete?

(c) Show that the set of rational numbers is not locally compact.

(d) For what space X, the only dense set is X itself?

(e) Prove that the cardinal number of set of all continuous real valued functions on R is c.

(f) Prove that each path component of a space X is open if and only if each point of X has a path connected neighbourhood.

(g) Show that [a, b] is homeomorphic to [0, 1].

(h) Prove that ΠA_i is dense in ΠY_i if and only if $A_i \subset Y_i$.

(i) Show that intersection of two connected sets need not be connected. What about union? Justify your

(j) Prove that the continuous image of a compact space is compact.

(k) Show that the subspace Q of rational numbers in the real line R is disconnected.

(I) Define open map and give one example of it.

- (m) Let $\tau_1 = \{\phi, \{1\}, X_1\}$ be a topology on $X_1 =$ topology τ on $X_1 \times X_2$. $X_2 = \{a, b, c, d\}$. Find a base for the product $\{a,c,d\},\{b,c,d\},X_2\}$ be a topology on $\{1, 2, 3\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{c, d\},$
- (n) Consider the topology $\tau = \{\phi, \{a\}, \{b, c\}\}$ topology on Y. $\{b, c, d\}$ is a subset of X. Then find relative $\{a, b, c\}, X\}$ on $X = \{a, b, c, d\}$ and Y =
- (o) State continuum hypothesis

Group - B

2. Answer any four questions:

5×4=20

- (a) Show that a bijective map f from a topological space X onto a topological space Y is a open map. homeomorphism if and only if f is a continuous and
- (b) Let X be a non-empty set and a mapping $\mathbf{I}: P(X) \to P(X)$ satisfies
- (i) $I(A) \subset A, \forall A \in P(X)$.
- (ii) I(X) = X.

(iii) $I(A \cap B) = I(A) \cap I(B), \forall A, B \in P(X)$

(iv) $I(I(A)) = I(A), \forall A \in P(X).$

Then show that $\tau = \{I(A) : A \in P(X)\}$ is a topology and I(A) = int(A).

- $\tau = \{\phi, \{a\}, \{a,b\}, \{a,c,d\}, \{a,b,e\}, \{a,b,c,d\}, X\}$ be a topology on $X = \{a, b, c, d, e\}$. Let A =interior, boundary, derived sets of each of the set $\{a, b, c\}, B = \{c, e\}.$ Determine closure, exterior,
- (d) Prove that the function $f:(X, \tau_1) \rightarrow (Y, \tau_2)$ is continuous if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
- (e) Prove that the product topology in $\Pi_i Y_i$ is the smallest topology for which all projections $p_j:\Pi_iY_i\to Y_j$ are continuous.
- (f) Let (Y, τ_Y) be a subspace of a topological space (X, τ) . Show that $\overline{A_Y} = Y \cap \overline{A}$.

Group - C

3. Answer any two questions:

10×2=20

(a) (i) State and prove Lebesgue number theorem.

- (ii) State and prove Ascoli's theorem.
- 5+5
- (i) Let X be an uncountable set, and τ is the family consisting of empty set and all complements of countable sets. Show that τ is a topology on X.
- (ii) Prove that $f: X \to Y$ is a open map if and only if $f(\text{int } A) \subset \text{int}(f(A))$ for each $A \subset X$, X and Y are topological spaces. 5+5
- (i) Prove that a topological space Y is locally each open sets are open. connected if and only if the components of
- (ii) Let (X, τ) be a connected topological space sets. Prove that each of the sets $A \cup G$ and and A be a connected subset of X and $B \cup H$ are connected. $X-A=G\cup H$, G and H be the separated
- <u>a</u> (i) Let (X, d) be a metric space and $A \subseteq X$ A is bounded. Is the converse true? Justify your answer. Then prove that if A is totally bounded, then
- (ii) Prove that a compact subset of a metric true? Justify your answer. space is closed and bounded. Is the converse

Group - A

[Theory of Equations]

- 1. Answer any *ten* questions from the following: $2 \times 10 = 20$
- (a) Find a biquadratic equation with rational coefficients having $(\sqrt{2}\pm 1)$ as roots.
- (b) If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $(\alpha^3+1)(\beta^3+1)(\gamma^3+1)(\delta^3+1).$ $x^4 - x^3 + 2x^2 + x + 1 = 0$, find the value of
- (c) Find the condition for which the equation $(x+1)^4 = a(x^4+1)$ is a reciprocal equation.
- (d) If q, r, s be positive, then find the nature of the roots of the equation $x^4 + qx^2 + rx - s = 0$.
- (e) Show that the equation $x^3 3x^2 9x + 27 = 0$ has a multiple root.
- (f) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$ ($d \ne 0$), show that $\alpha = -$

V-5/43 - 1500

12)

- (g) Show that the equation $1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} = 0$ cannot have equal roots.
- (h) Define Binomial equation and special root of an equation.
- (i) If the roots of the equation $x^3 + 3px^2 + 3qx + r = 0$ be in harmonic progression, then show that $2q^3 = r(3pq r)$.
- (j) If $x^4 + px^2 + qx + r$ has a factor of the form $(x-\alpha)^3$, prove that $8p^3 + 27q^2 = 0$.
- (k) Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$, where

 $a_0, a_1, ..., a_n$ are integers. If $\frac{P}{q}$ be a rational root of the equation f(x) = 0, where p, q are prime to each other, then prove that p is a divisor of a_n .

- (l) If the sum of two roots of the equation $x^3 + \alpha x^2 + \beta x + \gamma = 0$ is zero, then find the relation among α , β , γ .
- (m) Find an upper limit of the real roots of the equation $x^4 x^3 2x^2 4x + 1 = 0$.

(13

(n) Find the remainder when $x^5 - 3x^4 + 4x^2 + x + 4$ is divided by (x+1)(x-2).

(o) The roots of the equation $x^3 - 3p \cdot x^2 + 3(p-1)x$ +1=0 are α , β , γ , find the equation whose roots

Group - B

are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$.

2. Answer any four questions:

5×4=2

(a) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, $(r \neq 0)$ find an equation whose roots are

$$\frac{1}{\alpha} + \frac{1}{\beta} - \frac{1}{\gamma}, \frac{1}{\beta} + \frac{1}{\gamma} - \frac{1}{\alpha}, \frac{1}{\alpha} + \frac{1}{\gamma} - \frac{1}{\beta}.$$

- (b) Solve $x^3 6x^2 + 30x 25 = 0$ by Cardan's method.
- (c) If $f(x) = 2x^3 + 7x^2 2x 3$, then express f(x-1) as a polynomial in x. Apply Descartes's rule to both the equations f(x) = 0 and

14)

f(-x)=0 to determine the exact number of positive and negative roots of f(x)=0.

- (d) Solve the equation $x^7 + 4x^6 + 4x^5 + x^4 x^3 4x^2 4x 1 = 0$.
- (e) Solve the equation $x^4 18x^2 + 32x 15 = 0$ by Ferrari's method.
- (f) If α, β, γ be the roots of the equation $x^3 + bx^2 + cx + d = 0$, $d \neq 0$, find the equation whose roots are $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$, $\gamma + \frac{1}{\gamma}$.

Group - C

3. Answer any two questions:

 $10 \times 2 = 2$

- (a) (i) Prove that the roots of the equation $\frac{A_1}{x+a_1} + \frac{A_2}{x+a_2} + \dots + \frac{A_n}{x+a_n} = x+b \text{ are all real, where } a_i, A_i, b \text{ are all real numbers and } A_i > 0.$
- (ii) If the equation $x^3 + px^2 + qx + r = 0$ has a root $\alpha + i\alpha$, where p, q, r and α are real, prove that $(p^2 2q)(q^2 2pr) = r^2$. Hence, solve the equation $x^3 7x^2 + 20x 24 = 0$.

- (15)
- (b) (i) Show that the roots of the cubic $x^3-3x+1=0$ are $2\sin 10^\circ$, $2\sin 50^\circ$ and $(-2\sin 70^\circ)$

- (c) (i) Let $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, where $a_0, a_1, ..., a_n$ are integers. If f(0) and f(1) are both odd, prove that the equation can not have an integer root. Hence, prove that the equation $x^4 + 6x^3 + 3x^2 14x + 15 = 0$ can not have an integer root.
- (ii) Reduce the equation ax³+3bx²+3cx+d=0
 (a, b, c, d are real and a≠0) to the standard form z³+3Hz+G=0 where G and H are to be determined by you. Hence obtain a necessary and sufficient condition in terms of G and H for the above equation have two equal roots.
- (d) (i) Solve the equation $x^5 1 = 0$ and deduce the values of $\cos \frac{\pi}{5}$ and $\cos \frac{2\pi}{5}$.

(ii) Transform the equation $x^3 + 6x^2 + 9x + 4 = 0$ into one which shall want the second term and then find the equation whose roots are the squares of the differences of the roots of the obtained equation.