2023

3rd Semester Examination

MATHEMATICS (Honours)

Paper: C5-T

(Theory of Real Functions and Introduction to Metric Space)

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any ten questions:

2×10=20

- 1. Evaluate: $\lim_{x\to 3} \left(\left[x \right] \left[\frac{x}{3} \right] \right)$.
- 2. Give an example to show that a function which is continuous on an open bounded interval may not be uniformly continuous there.
- 3. Give the geometrical interpretation of MVT.
- 4. On the real line \mathbb{R} , show that a singleton set is not an open set. P.T.O.

V-3/50 - 1200

- 5. Using intermediate value theorem show that $x^3+x^2-x+1=0$ has a solution in the interval (-2, 2).
- 6. Determine the points of discontinuity of $[\sin x]$ in $[-2\pi, 2\pi]$.
- 7. Let $f:[0,1] \to \mathbb{R}$ be a continuous function that does not assume any of its values twice and with f(0) < f(1). Show that f is strictly increasing on [0,1].
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

 $f(x) = x^2$, if x is rational

=0, if x is irrational

Show that f is differentiable at x = 0 and find f'(0).

- 9. Examine if f(x) = x [x] has a local maximum or local minimum at x = 0.
- 10. Use Taylor's theorem to prove that

$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$$
, if $x > 0$.

11. $f: R \to R$ is defined by

$$f(x) = |x| + |x-1| + |x-2|, x \in R$$
. Find the derived function f' and specify the domain of f' .

 Prove that in any discrete metric space any set is an open set.

- 13. Let (M, d) be a metric space. Then for all $A, B \subset M$, prove that $A \cap B \neq \varphi \Rightarrow \delta(A \cup B) \leq \delta(A) + \delta(B)$, where $\delta(A)$ represents diameter of A.
- 14. In the set R^2 of all order pair of real numbers consider the function $d(X,Y) = |x_1 y_1| + |x_2 y_2|$ for all $X = (x_1, x_2), Y = (y_1, y_2) \in R^2$. Prove that (R^2, d) is a metric space.
- 15. Let (X, d) be a metric space. Then prove that $\forall A$, $B \subseteq X$, $A \subset B \Rightarrow S(A) \leq S(B)$, where S(A) denotes the diameter of A.

Group - B

Answer any four questions:

5×4=

- 16. Prove that $\frac{x}{\sin x} < \frac{\tan x}{x}$ for $x \in (0, \pi/2)$.
- 17. State and prove the Hausdorff Property.
- 18. Let I be a closed and bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then prove that f is uniformly continuous on I.
- 19. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be strictly monotone and continuous on I. Prove that the function g inverse to f is strictly monotone and continuous on f(I).

T.O.

21. Define metric space. Let A be a non-empty set and d₁,
d₂ be two metrics defined on it. Prove that a function d: A×A→R given by d = max{d₁, d₂} is another metric on A.

Group - C

Answer any two questions:

10×2=2

22. (i) Let (A, d) be a metric space. Then prove that (A, \sqrt{d}) is also a metric space.

- (ii) In any metric space (X, d), prove that intersection of a finite number of open sets is open. 4+6
- 23. (i) State and prove Lagrange's mean value theorem.
- (ii) Find the Taylor series for f(x) centered at the given value of a, where $f(x) = 2 \cos x$, $a = 7\pi$.
- 24. (i) A function $f:[0,1] \to \mathbb{R}$ is defined by

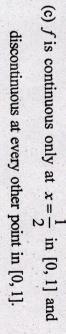
f(x) = x, if x is rational in [0, 1]

= (1-x), if x is irrational in [0, 1].

Prove that

(a) f is injective on [0, 1],

0



- (ii) A function $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} . Prove that the set $S = \{x \in \mathbb{R}: f(x) = 0\}$ is closed in \mathbb{R} . (2+2+3)+3
- 25. (i) Let $D \subset R$ and $f:D \to R$ be a function. Let $c \in D'$. Then prove that a necessary and sufficient condition for the existence of $\lim_{x \to c} f(x)$ is that for a pre-assigned positive ε there exist a positive δ such that $|f(x_1) f(x_2)| < \varepsilon$ for every pair of points $x_1, x_2 \in N'(c, \delta) \cap D$.
- (ii) Let the functions $f:R \to R$ and $g:R \to R$ are both continuous on R. Then prove that the set $S = \{x \in R: f(x) = g(x)\}$ is a closed set in R.

V-3/50 - 1200