B.Sc./6th Sem (H)/MATH/23(CBCS)

2023

6th Semester Examination MATHEMATICS (Honours)

Paper: C 14-T

[Ring Theory and Linear Algebra-II]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any ten questions:

 $2 \times 10 = 20$

LLIBR

- 1. Let $Z_i = \{a+ib: a, b \in Z\}$ be the ring of Gaussian integers. Show that 1+i is irreducible element in Z_i .
- 2. Show that the polynomial $f(x) = x^2 + \overline{3}x + \overline{2} \in \mathbb{Z}_6[x]$ has four zeros in \mathbb{Z}_6 .
- 3. Let W_1 and W_2 be subspaces of a finite dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.
- 4. Let T be a linear operator on a finite dimensional inner

P.T.O.

(2)

product space V. If T has an eigenvector, then its adjoint operator T^* does have so.

- 5. Let R be a UFD and $a, b, c \in R \setminus \{0\}$ such that a|bc and $gcd(a, b) \sim 1$. Then prove that a|c.
- 6. State *Eisenstein's criterion* for irreducibility of a polynomial $f(x) \in \mathbb{Z}[x]$ over \mathbb{Z} .
- 7. Let U be a subset of a vector space V over the field F. Prove that the annihilator of U (denoted by U^0) is a subspace of the dual space V^* .
- 8. Show that the polynomial $f(x) = 21x^3 3x^2 + 2x + 9$ is irreducible over \mathbb{Q} .
- 9. For any linear transformation T, define the adjoint linear transformation T^* of T. Hence prove that

$$\left(T_{1}T_{2}\right)^{*}=T_{2}^{*}T_{1}^{*}$$

- 10. Let P be the linear operator on the vector space \mathbb{R}^2 over \mathbb{R} defined by P(x,y)=(x,0) for all $(x,y) \in \mathbb{R}^2$. Find the minimal polynomial for P.
- 11. If T is a unitary linear transformation, then show that the characteristic roots of T all have absolute value 1.
- 12. Consider the vector space \mathbb{R}^2 over \mathbb{R} equipped with

ではいる。

the standard inner product. Consider $\alpha = (1,2)$ and $\beta = (-1,1)$. Find an element $\gamma \in \mathbb{R}^2$ for which $<\alpha,\gamma>=-1$ and $<\beta,\gamma>=3$.

- 13. Let V be an inner product space and $x, y \in V$. If $\langle x, y \rangle = \langle y, y \rangle$ for all $y \in V$ then prove that x = y.
- 14. Let V be the vector space \mathbb{C}^2 over \mathbb{C} with the standard inner product. Let T be the linear operator on V defined by T(1, 0) = (1, -2) and T(0, 1) = (i, -1). Find $T^*(\alpha)$ where $\alpha = (x_1, x_2) \in V$.
- 15. Give an example of a 2×2 complex matrix A such that A^2 is normal but A is not normal.

Group - B

Answer any *four* questions : $5 \times 4 = 20$

16. (i) Let R be an integral domain and $f(x), g(x) \in R[x]$. Prove that

$$\deg(f(x)g(x)) = \deg f(x) + \deg g(x)$$

- (ii) Find all the associates of $x^2 + [2]$ in $\mathbb{Z}_7[x]$. 3+2=
- 17. (i) Is the ring of all 2×2 matrices with their entries from \mathbb{Z} a PID? Justify your answer.

P.T.O.

(4)

- (ii) Exhibit (with proper justification) an ideal I in the polynomial ring $\mathbb{Z}[x]$ so that I is not a principal ideal.
- 18. Let V be the vector space of all polynomials over \mathbb{R} with degree less than or equal to 2. Let t_1 , t_2 , t_3 be three distinct real numbers and L_1 , L_2 , L_3 be three linear functionals on V defined by $L_i(p) = p(t_i)$ for all i = 1,2,3. Find the basis $\mathcal{B} = \{p_1, p_2, p_3\}$ of V such that $\{L_1, L_2, L_3\}$ becomes the dual basis of \mathcal{B}^* of \mathcal{B} .

19. Consider the matrix
$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$
 over the field

of real numbers. Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

- 20. Let V be a finite dimensional vector space over the field F and T be a linear operator on V. If T is diagonalizable, then prove that the minimal polynomial for T is a product of distinct linear factors.
- 21. Let V be a finite dimensional inner product space and T be an invertible linear operator on V. Then show that
- (i) T^* is also an invertible operator on V.

(ii)
$$\left(T^*\right)^{-1} = \left(T^{-1}\right)^*_0$$
. The same same 2

()

Group - C

Answer any two questions:

stions: 10×2=20

- 22. (i) Check whether the following statement is true or false: "Let R be an integral domain, a,b∈ R\{0} and d = gcd(a,b). Then there exist x,y∈ R such that d = ax + by." Give proper justification in support of your answer.
- (ii) Let V be a vector space of dimension m over a field F and W be a vector subspace of dimension k of V where $1 \le k < n$. Then prove that the dimension of the subspace $\{f | f \in V^*, f(w) = 0 \forall w \in W\}$ is n k.
- (iii) Let V be a complex or real inner product space. Then show that the induced norm $\| \cdot \|$ satisfies the following equality:

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + 2||y||^2)$$

(Parallelogram Law) for all $x, y \in V$.

(i) Construct a field of 8 elements.

23.

ر. د

(ii) Let V be the vector space of all polynomial functions R to R of degree ≤ 2 . Let t_1, t_2, t_3 be three distinct real numbers and let $L_i:V \to F$ be

T.O.

13 X 13

such that $L_i(p(x)) = p(t_i)$, i = 1,2,3. Show that $\{L_1, L_2, L_3\}$ is a basis of \widehat{V} . Determine a basis of V such that $\{L_1, L_2, L_3\}$ is its dual.

- 24. (i) Prove that $I = \langle x^2 + 1 \rangle$ is a prime ideal in $\mathbb{Z}[x]$ but not a maximal ideal in $\mathbb{Z}[x]$.
 - (ii) Let W be the plane in \mathbb{R}^3 spanned by the set $S = \{(1,2,2), (-1,0,2)\}$. Then find an orthonormal basis \mathcal{B}' for W applying Gram-Schmidt orthogonalization process and extend \mathcal{B}' to an orthonormal basis \mathcal{B} of V. 3+2=5
- 25. (i) For any prime p, show that the p^{th} cyclotomic polynomial is irreducible over \mathbb{Q} .
 - (ii) Let V be an inner product space and $S = \{v_1, v_2, \dots, v_n\}$ be an orthonormal subset of V. Show that for any $x \in V$, $\|x\|^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2$.