2023

4th Semester Examination MATHEMATICS (Honours)

Paper: C 10-T

[Ring Theory and Linear Algebra - I]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any ten questions:

2×10=20

- (a) Define divisors of zero in a ring. Show that the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in R \right\}$ contains divisor of zero.
- (b) Find the maximal ideals of Z_6 , the ring of integers modulo 6.
- (c) Prove that a ring R is commutative if and only if $(a+b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.

P.T.O.

2)

- (d) If a is a fixed element of a ring R, show that $I_a = \{x \in R : ax = 0\}$ is a subring of R.
- (e) Let R = (Z, +, .), R' = (3Z, +, .) and a mapping $\varphi: R \to R'$ be defined by $\varphi(a) = 3a$, $a \in R$. Examine if φ is a homomorphism.
- (f) Let (R, +, .) and (R', +, .) be two rings and $f: R \to R'$ be a homomorphism. Then prove that $f(-x) = -f(x), x \in R$.
- (g) Show that the solutions of differential equation $2\frac{d^2y}{dx^2} 9\frac{dy}{dx} + 2y = 0$ is a subspace of the vector space of all real valued continuous function.
- (h) Determine k so that the set S is linearly dependent in \mathbb{R}^3 , where $S = \{(k, 1, 1), (1, k, 1), (1, 1, k)\}.$
- (i) Find a basis of the subspace W of R^3 , where $W = \{(x, y, z) \in R^3 : 3x 2y z = 0\}$.
- (j) Let V be a vector space over the field F and W_1 , W_2 be two subspaces of V. Is $W_1 \cup W_2$ a subspace of V?
- (k) Find a basis for the vector space \mathbb{R}^3 that contains the vector (1, 2, 0).

- (1) Let $T: \mathbb{R}^2 \to \mathbb{R}$ be define by T(x, y) = |x y|. Examine that T is a linear transformation or not.
- (m) Define rank and nullity of a linear transformation.
- (n) Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,0) = (1,1) and T(0,1) = (-1,2).
- (o) Let V and W be vector spaces over a field F. Let
 T:V→W be a linear transformation. If
 kerT = {θ}, then show that T is injective.
- 2. Answer any four questions:

5×4=2

- (a) Prove that any non-trivial finite ring without zero divisors is a division ring.
- (b) Find all maximal ideals of the ring $(\mathbb{Z}_8, +, \cdot)$.
- (c) State and prove third isomorphism theorem for rings.
- (d) Let V be a real vector space and $\alpha_1, \alpha_2, \alpha_3 \in V$ satisfying $\alpha_1 + \alpha_2 + \alpha_3 = \theta$. Then prove that $W_1 = W_2 = W_3$ where W_1 is the subspace spanned by $\{\alpha_1, \alpha_2\}$, W_2 is the subspace spanned by $\{\alpha_2, \alpha_3\}$ and W_3 is the subspace spanned by $\{\alpha_3, \alpha_4\}$.

(e) Let V be a finite dimensional vector space over the $\dim V/W = \dim V - \dim W.$ field F and W be a subspace of V. Then show that

(f) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by

$$T(x_1, x_2, x_3) = (3x_1, x_1 - x_2, 2x_1 + x_2 + x_3)$$

for all $(x_1, x_2, x_3) \in \mathbb{R}^3$. Find T^{-1} .

3. Answer any two questions:

- (a) (i) Show that $(R, +, \circ)$ does not form a ring 'o' denotes the composition of mappings denotes the por twise addition of functions and where R is the set of all real valued continuous functions defined on the real line and '+'
- (ii) Find all the zero divisors in the ring $\mathbb{Z}_4 \times \mathbb{Z}_6$
- (iii) Let V be the vector space of all 2×2 matrices over the field R. Let

$$W_1 = \left\{ \begin{pmatrix} x & -x \\ y & z \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\} \text{ and }$$

 $W_2 = \left\{ \begin{pmatrix} a & b \\ -a & c \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}.$ Find a basis for

the subspace $W_1 \cap W_2$.

4+3+3

- (b) (i) Show that 12Z is an ideal of the ring $(3\mathbb{Z},+,\cdot).$
- (ii) Find all the ideals of the quotient ring 3Z/12Z.
- (iii) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined

T(x, y, z) = (3x+z, -2x+y, -x+2y+4z)

ordered basis of \mathbb{R}^3 . If $B_1 = \{\alpha_1, \alpha_2, \alpha_3\}$ be the matrix representation of T with respect to $[T]_{B_i} = P^{-1}[T]_B P$ where $[T]_{B_i}$ stands for $\alpha_2 = (-1, 2, 1), \quad \alpha_3 = (2, 1, 1), \text{ then find an}$ invertible matrix P such that an ordered basis of \mathbb{R}^3 where $\alpha_1 = (1, 0, 1)$, for all $(x, y, z) \in \mathbb{R}^3$. Let B be the standard

- <u></u> (i) Let R be a commutative ring with 1. Then if the zero ideal $\{0\}$ is a prime ideal of R. prove that R is an integral domain if and only
- (ii) Let V be a vector spaces over the field F with the vector space F^n over F. dim V = n. Prove that V is isomorphic with

- (iii) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V such that $rank T = rank T^2$. Then prove that $ker T \cap Im T = \{\theta\}$.
- (d) (i) Give an example of an infinite ring whose characteristic is finite.
 - (ii) Let f: Q→S and g:Q→S be two ring homomorphisms from the field of rationals to a ring (S, +, ·). Suppose f(x) = g(x) for all x ∈ Z. Then prove that f = g.
 - (iii) Find two linear operators T, U on the vector space \mathbb{R}^2 over \mathbb{R} such that UT is the zero operator on V but TU is not the zero operator on V.
 - (iv) Let T be the linear operator on \mathbb{R}^2 defined by T(a, b) = (-b, a) for all $(a, b) \in \mathbb{R}^2$. Find the matrix representation of T with respect to the standard ordered basis of \mathbb{R}^2 . 2+3+3+2