B.Sc./3rd Sem (H)/CHEM/23(CBCS)

2023

3rd Semester Examination

CHEMISTRY (Honours)

Paper: C 5-T

[Physical Chemistry - II]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) At what temperature Kp and Kc value of the reaction $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ is same?
- (b) Explain abnormal transport number with an example.
- (c) What are the dimension and SI unit of coefficient of viscosity?
- (d) Depict the wave function of 1st four energy states of a particle in a one dimensional box.

P.T.O.

(a) For a particle in a 1D box of length 2Å

calculate the probability of finding the particle

between 0 to 1.1Å.

(b) Construct the Hamiltonian of a linear simple

harmonic oscillator.

- (f) State Nernst distribution law.
- (g) Draw with proper explanation $\log K_p$ vs. 1/T plot for an exothermic reaction.
- (b) What is meant by linear operator? Give one example.

Group - B

Answer any four questions:

5×4=20

 $\left[\left(\frac{d}{dx}+x\right),\left(\frac{d}{dx}-x\right)\right].$

2. (a) Evaluate

commutator,

(b) State with reason which of the following functions is acceptable over the indicated interval (i) $\sin \times (0, \pi)$ (ii) $\tan \times (0, \pi)$.

- 3. (a) Depict with explanation conductometric titration curve of $AgNO_3$ vs. HCl. 2
- (b) The specific conductance of a saturated solution of AgCl is 1.55×10⁻⁶ ohm⁻¹cm⁻¹. The mobility of Cl⁻ and Ag⁺ are 5.6×10⁻⁴ and 6.8×10⁻⁴ cm²s⁻¹volt⁻¹ respectively. Calculate the solubility product of AgCl.

- 5. (a) Discuss the effect of addition of inert gas to the equilibrium of a reaction.
- (b) Calculate entropy of mixing when 2 moles of hydrogen gas is mixed with 3 moles of nitrogen at 27°C.
- 6. (a) Write the principle of Stokes method for determination of viscosity of a liquid.
- (b) Equivalent conductance of a weak monobasic acid at infinite dilution is 388.5 mho cm²eqv⁻¹. Find the equivalent conductance of 0.1 M solution, the degree of dissociation of which is 6%.
- 7. If K_p is the equilibrium constant of the reaction $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ at temperature T and pressure P, then express degree of dissociation of PCl_5 in terms of K_p and P. Hence discuss the effect of pressure on the equilibrium of the reaction. Judge whether it supports the Le-Chatelier's principle or not.

(4)

Group - C

Answer	OME	AMA	111	act.	onc	
MISWEI	ally	une	uu	Cou	α	

 $10 \times 1 = 10$

- 8. (a) Define molar conductance. Both for strong and weak electrolyte molar conductance increases with dilution. Explain with reason.
 - (b) For the reversible reaction 2A + B = 2C, ΔG° at 500 K is 2 kJ. Find the equilibrium constant of the reaction $A + \frac{1}{2}B = C$ at 500 K?
 - (c) What is the de-Broglie wavelength of an electron that has been accelerated through a potential difference of 100 volt?
- 9. (a) Derive Gibbs-Duhem equation.
 - (b) Judge whether the operator d^2/dx^2 is hermitian or not.
 - (c) The viscosity coefficient of ethanol at 25°C is 0.0109 poise and activation energy for viscous flow of ethanol is 3.23 k cal mol⁻¹ Calculate the viscosity coefficient at 0°C.
 - (d) Write thermodynamic criteria for a solution to be ideal.

-584.60 - 1968 = 3.23

3