PG (NEW) CBCS M.Sc. Semester-II Examination, 2019 **CHEMISTRY**

PAPER: CEM-203 (INORGANIC CHEMISTRY - II)

Full Marks: 40

ESTD 201

Group-A

Answer any four questions of the following:

2×2=4

- Write down the four important principles to construct the character table 1. for a point group of symmetry.
- NMR-spectroscopy is a useful technique to monitor fluxional behavior-2.
- Explain why no polarization is observed in cubic or higher symmetry molecules.
- What do you mean by 'Agostic interaction'? 4.
- Draw the orbital overlap in Schrock's carbine complex.
- What do you mean by Berry pseudo rotation?
- Show the different bonding modes of dinitrogen in dinuclear transition metal-dinitrogen complexs.
- 8. Why square planer complexes sometimes violet 18-electron rule- Explain with an example.

Group-B

Answer any four questions of the following:

4×4=16

- 9. (a) How transition metal orbitals interact with the molecular orbitals of an allyl ligand?
 - (b) The structure of cyclobutadiene itself is rectangular, while it is close to square in the coordination compound - comment.
- 10. (a) What is Creutz-Taube complex?
 - (b) Why the chemistry of these complexes was studied?

(2+2)

11. Write down the synthesis of tungsten bronze and explain its semi-

conductivity property.

(4)

(Turn over)

(2)

ESTD 2017 12. Find out the normal fundamental modes of vibration of CH2Cl2 molecule TRA and also point out which mode is/are IR active and which mode is/are Raman active.

- 13. (a) Discuss the phenomenon of 'Carbonyl scrambling' in [FeCp(CO)₂]₂ complex.
 - (b) Calculate the styx number of $[B_6H_6]^{-2}$.

(2+2)

- 14. What is boron neutron capture therapy? Give at least two example of 1st and (4) 2nd generation BNCT AGENTS.
- 15. Complete the following reactions:

(i)
$$RhCl_3 + C_2H_4$$
 $\xrightarrow{CH_3CH_2OH/H_2O}$?
(ii) $HCo(CO)_4 + \nearrow$?
(iii) $Cr(CO)_6 + PhLi \longrightarrow$?
(iv) $[Ir(CO)Cl(PPh_3)_2 + C_{60} \longrightarrow$? (4 x 1)

16. (a) The Pt- C and C-C bond length data are given for complex (1) and (2).

 $Pt(PPh_3)_2\{\eta^2-C_2(CN)_4\}$ $Pt(PPh_3)_2(\eta^2-C_2H_4)$ (2) (1) dc-c: 1.49 Å dc-c: 1.43 Å d_{Pt-C}: 2.11 Å dPt-C: 2.11 Å

Draw the structure of complex (1) and (2) and discuss their bonding. (4)

(b) Classiy the following compounds with respect to closo, nido, arachino and hypo.

(2+2) $B_{3}H_{6}^{+},\ B_{4}H_{6}(CoCp)_{2},\ B_{3}H_{7}[Fe(CO)_{3}]_{2},\ B_{2}H_{7}^{-}$

(Turn over)

Group-C

Answer any two questions of the following:

2×8=16

17. (a) Establish the relation:

$$a_i = \frac{1}{h} \sum_{R} x(R) x_i(R)$$
ESTD 2

(2+4+2)

JEII .

Where the terms have their usual significance.

(b) The ground state of trans $-N_2F_2$ is B_g . To what excited states may it be excited by electric dipole transitions and what polarization of light is necessary to use?

Character table for C2h point group

	E	C ₂ (z)	i	σ_h	linear, rotations	quadratic
Ag	1	1	1	1	Rz	x^2 , y^2 , z^2 , xy
Bg	1	-1	1	-1	R _x , R _y	xz, yz
Au	1	1	-1	-1	Z	
Bu	1	-1	-1	1	x, y	

- (c) Show that the representation of a direct product, Γ_{AB} will contain the totally symmetric representation only if the irreducible Γ_A = the irreducible Γ_B .
- 18. (a) Which of the following metal alkene complexes do you think will look most like a metallacyclo propane? Explain your answer:
- (i) (CH₂=CH₂)Ni(PPh₃)
- (ii) (CH₂=CH₂)Fe(CO)₄
- (b) The change of CO stretching frequency in the IR spectrum of compound (1) and (2) given below:

[IrCl(CO)(PPh₃)₂]

 \bar{v}_{co} : 1967 cm⁻¹

[IrCl₃(CO)(PPh₃)₂]

 $\bar{\upsilon}_{co}$: 2075 cm⁻¹

Why does the position of \bar{v}_{CO} in the IR spectrum shift?

(Turn over)

(c) Complete the following reaction:

- 19. (a) Using 3N Cartesian coordinates find out the character for all symmetry operators corresponding to reducible representation of H_2O molecule. (Assuming xz as the molecular plane)
- (b) Find out the number of irreducible representation present within the above reducible representation.
- (c) Show that the angular wave function $(3\cos^2\theta 1)$ signifies the dz^2 orbital.

(3+3+2)

8

(20) Show that $n \to \pi^*$ electric dipole transition is forbidden but $n \to \pi^*$ transition is allowed for HCHO molecule.

Character table for C_{2v} point group given below:

Czy	E	C2	$\sigma_{v}(xz)$	σν'(yz)		
Δį	1	1	1 1	1	2	x^2, y^2, z^2
A ₂	1	1	1		Rz	xy
B1	1	-1	1	-1	x, Ry	xz
B2	1	-1	-1	1	y, Rx	yz
