PG (CBCS)
M.SC. Semester- IV Examination, 2023

PHYSICS
PAPER: PHS 401
(PARTICLE PHYSICS \& STATISTICAL MECHANICS-II)
Full Marks: $\mathbf{4 0}$
Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS 401.1

PARTICLE PHYSICS
F.M. - 20

GROUP-A

1. Answer any TWO of the following questions:
a) If $p p \rightarrow d \pi^{+}$and $p n \rightarrow d \pi^{0}$ where d is deuteron. Prove that $\sigma_{p p}: \sigma_{p n}=2: 1$.
b) What is the difference between a pseudoscalar meson and a vector meson?
c) In $\mathrm{SU}(3)$, the generators are λ_{a} and λ_{b}, then $\left[\lambda_{a}, \lambda_{b}\right]=$ \qquad
d) Calculate the mass of baryon (uиu).

GROUP-B

2. Answer any TWO of the following questions:
a) Why para-positronium decay into two photons and ortho-positronium decay into three photons?
b) Calculate the branching ratio for the decay of the resonance $\Delta^{+}(1232)$ which has

$$
\text { two decay modes. } \quad \begin{aligned}
\Delta^{+} & \rightarrow p \pi^{0} \\
& \rightarrow n \pi^{+}
\end{aligned}
$$

c) What is $\tau-\theta$ puzzle? How it is resolved?
d) What is G-Parity? Find an expression of it.

GROUP-C

3. Answer any ONE of the following questions:

$$
8 \times 1=8
$$

a) $\pi^{+}+p \rightarrow \Sigma^{+}+K^{+}$. \qquad (a) $; \pi^{-}+p \rightarrow \Sigma^{-}+K^{+}$ \qquad (b) $; \pi^{-}+p \rightarrow \Sigma^{o}+K^{o}$(c); If isospin amplitude $a_{1 / 2} \ll a_{3 / 2}$ and these reactions occur at same energy. Show that $\sigma_{a}: \sigma_{b}: \sigma_{c}=9: 1: 2$.
b) Construct the famous Gell-Mann matrices and identify the iso-spin states of each particle in the meson octet.

PHS 401.2

F.M. - 20

GROUP-A

1. Answer any TWO of the following questions:
$2 \times 2=4$
a) Determine the Bose temperature of bosons each of mass $6.65 \times 10^{-27} \mathrm{~kg}$ and spin zero, their concentration being $10^{26} \mathrm{~m}^{3}$.
b) Using $\ln G_{Z}=-\sum \ln \left(1-\eta e^{-\beta E_{i}}\right)$. Show that the number of particles in the ground state, $N_{0}=\frac{\eta}{1-\eta}$, where η is the fugacity.
c) Draw the temperature variation of chemical potential for FD and BE ideal gas.
d) Prove that total number of photons in a cavity $\sim T^{3}$.

GROUP-B

2. Answer any TWO of the following questions: $4 \times 2=8$
a) Show that the Helmholtz free energy of a system of fermions is given by $F=$ $\frac{3}{5} N \varepsilon_{F}^{(0)}\left[1-\frac{5 \pi^{2}}{12}\left(\frac{k T}{\varepsilon_{F}^{(0)}}\right)^{2}+\ldots\right]$.
b) Find the expression of Null pressure of Fermi-gas in 2D.
c) How many photons are there in 1c.c. of radiation at $10^{4} \mathrm{~K}$. Also find their average energy.
d) Prove that in 3D solid of N Harmonic oscillator, $E_{0}=\frac{9}{8} N k_{B} T_{D}$ where T_{D} is the Debye Temperature.

GROUP-C

3. Answer any ONE of the following questions:

$$
8 \times 1=8
$$

a) Find an expression of photoelectric current density if $h \nu \ll \phi$, where ϕ is the work function of metal.
b) (i)In a lattice of $(\mathrm{N}+1)$ sites has $\mathrm{S}_{\mathrm{i}}= \pm 1$ at each site, $\hat{H}=-h \sum_{i=0}^{N} S_{i}-J \sum_{i=1}^{N} S_{i} S_{0}$. When $\mathrm{h}=0$, prove that $\left\langle S_{i} S_{j}\right\rangle=\left\langle S_{0} S_{i}\right\rangle\left\langle S_{0} S_{j}\right\rangle$. (ii) If $\varepsilon\left(l, p_{z}\right)=\left(l+\frac{1}{2}\right) \hbar \omega_{c}+\frac{p_{z}{ }^{2}}{2 m}$, find degeneracy of each Landaue level.

