RECITI

Total pages: 02

PG (CBCS) M.SC. Semester- IV Examination, 2023 PHYSICS

PAPER: PHS 401

(PARTICLE PHYSICS & STATISTICAL MECHANICS-II)

Full Marks: 40

Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

PHS 401.1 PARTICLE PHYSICS F.M. - 20

GROUP-A

1. Answer any **TWO** of the following questions:

 $2 \times 2 = 4$

- a) If $pp \rightarrow d\pi^+$ and $pn \rightarrow d\pi^0$ where d is deuteron. Prove that $\sigma_{pp} : \sigma_{pn} = 2:1$.
- b) What is the difference between a pseudoscalar meson and a vector meson?
- c) In SU (3), the generators are λ_a and λ_b , then $[\lambda_a, \lambda_b] = \dots$
- d) Calculate the mass of baryon (uuu).

GROUP-B

2. Answer any **TWO** of the following questions:

 $4 \times 2 = 8$

- a) Why para-positronium decay into two photons and ortho-positronium decay into three photons?
- b) Calculate the branching ratio for the decay of the resonance $\Delta^+(1232)$ which has two decay modes. $\Delta^+ \to p\pi^0$
 - two decay modes. $\rightarrow n\pi^+$
- c) What is $\tau \theta$ puzzle? How it is resolved?
- d) What is G-Parity? Find an expression of it.

GROUP-C

3. Answer any **ONE** of the following questions:

 $8 \times 1 = 8$

- a) $\pi^+ + p \rightarrow \Sigma^+ + K^+$(a); $\pi^- + p \rightarrow \Sigma^- + K^+$(b); $\pi^- + p \rightarrow \Sigma^o + K^o$(c); If isospin amplitude $a_{\frac{1}{2}} << a_{\frac{3}{2}}$ and these reactions occur at same energy. Show that $\sigma_a : \sigma_b : \sigma_c = 9:1:2$.
- b) Construct the famous Gell-Mann matrices and identify the iso-spin states of each particle in the meson octet.

(P.T.O)

(1)

PHS 401.2 <u>STATISTICAL MECHANICS-II</u> F.M. - 20

GROUP-A

1. Answer any **TWO** of the following questions:

 $2 \times 2 = 4$

- a) Determine the Bose temperature of bosons each of mass 6.65×10^{-27} kg and spin zero, their concentration being 10^{26} m³.
- b) Using $\ln G_Z = -\sum \ln(1 \eta e^{-\beta E_i})$. Show that the number of particles in the ground state, $N_0 = \frac{\eta}{1-\eta}$, where η is the fugacity.
- c) Draw the temperature variation of chemical potential for FD and BE ideal gas.
- d) Prove that total number of photons in a cavity $\sim T^3$.

GROUP-B

2. Answer any **TWO** of the following questions:

 $4 \times 2 = 8$

- a) Show that the Helmholtz free energy of a system of fermions is given by $F = \frac{3}{5}N\varepsilon_F^{(0)}[1-\frac{5\pi^2}{12}\left(\frac{kT}{\varepsilon_F^{(0)}}\right)^2+\dots].$
- b) Find the expression of Null pressure of Fermi-gas in 2D.
- c) How many photons are there in 1c.c. of radiation at 10⁴K. Also find their average energy.
- d) Prove that in 3D solid of N Harmonic oscillator, $E_0 = \frac{9}{8} N k_B T_D$ where T_D is the Debye Temperature.

GROUP-C

3. Answer any **ONE** of the following questions:

 $8 \times 1 = 8$

- a) Find an expression of photoelectric current density if $h\nu \ll \phi$, where ϕ is the work function of metal.
- b) (i)In a lattice of (N+1) sites has $S_i=\pm 1$ at each site, $\hat{H}=-h\sum\limits_{i=0}^{N}S_i-J\sum\limits_{i=1}^{N}S_iS_i$. When h=0, prove that $\langle S_iS_j\rangle=\langle S_0S_i\rangle\langle S_0S_j\rangle$. (ii) If $\varepsilon(l,p_z)=(l+\frac{1}{2})\hbar\omega_c+\frac{p_z^2}{2m}$, find degeneracy of each Landaue level.
