MCC/21/M.SC./SEM.-WAFMA

PG (CBCS) M.Sc. Semester-IV Examination, 2023 MATHEMATICS

PAPER: MTM 402

(FUZZY MATHEMATICS WITH APPLICATIONS & SOFT COMPUTING)

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Write the answer for each unit in separate sheet

UNIT: 402.1

FUZZY MATHEMATICS WITH APPLICATIONS

F.M. - 20

1. Answer any **TWO** from the following questions:

 $2 \times 2 = 4$

- a) Determine the height and support for each of the following fuzzy sets that have Triangular Membership functions and Trapezoidal Membership functions. Draw the corresponding membership function for each case.
- b) What are the causes of uncertainty?
- c) State Bellman and Zadeh's principle.
- d) Let $f(x) = x^2 1$. Find $f(\tilde{A})$, where $\tilde{A} = \{(-2, 0.41), (-1, 0.75), (0, 1.0), (1, 0.32), (2, 0.96), (3, 0.2)\}.$
- 2. Answer any **TWO** from the following questions:

 $2\times4=8$

- a) Prove that the fuzzy sets satisfy the distributive laws under standard fuzzy union and intersection.
- b) Consider the two fuzzy numbers $\tilde{A}=(5,7,10),~\tilde{B}=(0,3,9,13)$. Using addition, substruction and scalar multiplication rules for fuzzy numbers, determine the following: $2\tilde{A}+3\tilde{B},2\tilde{A}-3\tilde{B},~\tilde{A}+\tilde{B},~\tilde{A}-\tilde{B}$. Give an example of fuzzy set which is not convex. Determine whether the statement is true or false: α –cut of fuzzy set is also a fuzzy set. 2+1+1
- c) Show that fuzzy sets do not satisfied laws of contradiction and excluded middle. Is every fuzzy set a fuzzy number? Justify your answer. 3+1
- d) Explain the procedure to reduce the uncertainty from fuzzy multi-objective LPP.

(P.T.O.)

3. Answer any ONE from the following questions:

a) What do you mean by symmetric and non-symmetric fuzzy LPP? Let the fuzzy LPP with fuzzy resources be

Maximize $z = 2x_1 + x_2$ $3x_1 + x_2 \le \widetilde{13}$

 $4x_1 + 3x_2 \ge \widetilde{16}$ $x_1 + 2x_2 \le \widetilde{10}$ and $x_1, x_2 \ge 0$

equivalent crisp parametric programming problem. and the tolerances as $p_1=2, p_2=4$ and $p_3=3$. Convert the fuzzy LPP to

b) Consider the fuzzy set \bar{A} , with the following membership functions given

 $\mu_{A}(x) =$ $\frac{1}{x}$ - 5 $10 \le x \le 15$ Otherwise $5 \le x \le 10$

i. Find \tilde{A}^c , the complement of \tilde{A} . Also, sketch the membership function of

iv. Is it Convex? Justify your answer. ii. Find $\tilde{A}_{0.3}$, $\tilde{A}_{0.5}$ where \tilde{A}_{α} is the α -cut of the fuzzy set \tilde{A} iii.Determine support and height for the fuzzy set A. Is it normal? 2+2+2+2

[Internal Assessment- 05]

SOFT COMPUTING UNIT: 402.2

F.M. - 20

4. Answer any TWO from the following questions:

a) Write the different features of soft computing

b) Find the weights and threshold values of an ANN that should classify the

following input/output pairs

		1400		4
_	1	0	0	χ_1
_	0	1	0	x_2
_	0	0	0	$x_1 \wedge x_2$

c) Perform one point crossover (at 3) for the following Chromosomes

$$x_1 = 101010101010$$

 $x_2 = 0101010101$

Perform two-point crossover (at 2 and 5) for the following Chromosomes

 $y_2 = 1000101000$ $y_1 = 1110110100$

d) How fuzzy logic differs from usual logic?

 $2 \times 4 = 8$

5. Answer any **TWO** from the following questions:

a) Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c\}$ be two universes of discourses. Also, $\vec{A} = \{(1,0.2), (2,0.5), (3,0.7), (4,1.0)\},\$

Determine the fuzzy relation of the following fuzzy rule "IF x is \tilde{A} AND x is $\bar{B} = \{(1,0.3),(2,0.4),(3,0.8),(4,0.7)\}$ \tilde{B} THEN y is \tilde{C} ". and $\tilde{C} = \{(a, 0.1), (b, 0.6), (c, 0.9)\}.$

b) Explain Supervised leaning. Define max-min composition between two and $Y \times Z$ respectively. Find the Max-Min composition of $R \circ S$, if fuzzy relations. Suppose Rand S be two fuzzy relations defined on $X \times Y$ 0.44 0.86 0.00 0.36 /0.94 0.86 0.00 0.23

0.91 0.00 0.80 0.91 0.90 0.16 0.77 0.62 0.93 0.50 0.80 0.49 ′\ 0.10 0.16 0.07 0.85 \0.91 1.00 0.00 0.76 0.00 1.00 0.70 0.32

are

the

matrix

representation of R, S respectively.

c) Realise a Hebb net for the logical AND function with bipolar inputs and

(P.T.O.)

(P.T.O.)

(2)

(3)

d) Write a short note on mutation. What is the role and importance of mutation in Genetic Algorithms?

6. Answer any **ONE** from the following questions:

 $1 \times 8 = 8$

- a) Realize the function XOR gate using McCulloch-Pitts neuron model.
- b) Describe the binary coded GA procedure to maximize a real valued function $y = f(x_1, x_2)$ in $a \le x_1, x_2 \le b$.

[Internal Assessment- 05]

(4)