PG (CBCS)
M.SC. Semester- III Examination, 2023

Mathematics
PAPER: C-MTM 304
(DISCRETE MATHEMATICS)

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any FOUR of the following questions:
a) State Hand Shaking Lemma.
b) Define binary tree.
c) Define Poset.
d) Prove $\sim(p \vee q) \equiv \sim p \wedge \sim q$
e) What do you mean by centre of a graph?
f) State the principal of Mathematical induction.

GROUP-B

2. Answer any FOUR of the following questions:
a) Prove that a graph G is disconnected if and only if it's vertex set v can be partitioned into two non-empty disjoint subset v_{1}, v_{2} such that there exists no edges in G whose one vertex is in v_{1} and other is in v_{2}.
b) Prove that $(p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r)$.
c) In the Boolean algebra $(B,+, ., ')$, express the Boolean function $f(x, y, z)=$ $(x+y)(x+z)+y+z^{\prime}$ in its disjunctive normal form.
d) Prove that a circuit free graph with n vertices and ($n-1$) edges is a tree.
e) Define converse, inverse, contrapositive statement of conditional statement. Then prove that conditional and contrapositive statements are logically equivalent. $2+2$
f) Write down Huntington Postulates.

GROUP-C

3. Answer any TWO of the following questions:
a) State the principle of inclusion-exclusion. In a class of 25 students, 12 students have taken Mathematics, 8 students have taken Mathematics but not Biology. Find the number of students who have taken Mathematics and Biology and those who have taken Biology but not Mathematics.
b) Check whether the relation $R=\{(a, b) \in Z \times Z: a-b \leq 0\}$ is partial order relation or not. What is Tautology. Define chain and anti-chain with examples. $4+2+2$
c) Prove, by mathematical induction, $10^{n+1}+10^{n}+1$ is divisible by $3 \forall n \in N$. Draw a full adder using half adder.
d) Define regular graph. Let G is a r - regular graph where r is odd. Show that G has even number of vertices. Again show that the number of edges of G is multiple of r.

$$
2+(3+3)
$$

