PG (CBCS)

M.SC. Semester- III Examination, 2023

MATHEMATICS
PAPER: MTM 302
(TRANFORMS AND INTEGRAL EQUATIONS)
Full Marks: 50
Time: 2 Hours
The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any FOUR of the following questions:
a) Verify the final value theorem in connection with Laplace transform for the function $t^{3} e^{-t}$
b) Define wavelet function and analyze the parameters involved in it.
c) Define the inversion formula for Fourier transform of the function $f(x)$. What happens if $f(x)$ is continuous.
d) If $\bar{G}(x, y)$ be the two-dimensional Fourier transform of a function $G(x, y)$, then what is the Fourier inversion formula to get $G(x, y)$ from $\bar{G}(k, l)$.
e) If $F(p)$ denotes the Laplace transform of the function $f(t), t \geq 0$, state the conditions which $f(t)$ must satisfy so that $F(p)$ exists.
f) Define singular integral equation with an example.

GROUP-B

2. Answer any FOUR of the following questions:
$4 \times 4=16$
a) Define wavelet transform. Write down the main advantages of wavelet theory. Compare the wavelet transform with Fourier transform.
b) Let $F(k)$ and $G(k)$ be the Fourier transforms of $f(x)$ and $g(x)$ respectively defined in $(-\infty, \infty)$. Show that the Fourier transform of $\int_{-\infty}^{\infty} f(u) g(x-u) d u$, can be expressed in terms of the product $F(k) G(k)$. Hence prove that parseval's relation $\int_{-\infty}^{\infty}|f(k)|^{2} d k=\int_{-\infty}^{\infty}|f(x)|^{2} d x$.
c) If a and b are real constants, solve the following integral equation: $a x+b x^{2}=$ $\int_{0}^{x} \frac{y(t)}{(x-t)^{\frac{1}{2}}} d t$.
d) Find the Fourier transform of the function $f(x)=\left\{\begin{array}{ll}1, & |x|<0 \\ 0, & |x|>0\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$
e) Evaluate $L=\left\{\int_{0}^{t} \frac{\sin u}{u} d u\right\}$ by the help of Initial Value theorem.
f) Solve $t y^{\prime \prime}(t)+2 y^{\prime}(t)+t y(t)=0$, subject to the condition $y(0+)=1, y(\pi)=0$.

GROUP-C

3. Answer any TWO of the following questions:

a) (i) With help of the resolvent kernel, find the solution of the integral equation $y(x)=$ $1+x^{2}+\int_{0}^{x}\left(\frac{1+x^{2}}{1+t^{2}}\right) y(t) d t$.
(ii) Discuss the solution procedure of homogeneous procedure of homogeneous Fredholm integral equation of the second kind with degenerate kernel. $4+4$
b) (i) Form an integral equation corresponding to the following differential equation $\frac{d^{2} y}{d x^{2}}+(1-x)\left(\frac{d y}{d x}\right)+e^{-x} y(x)=x^{3}-5 x$, subject to conditions $y(0)=-3$ and $y^{\prime}(0)=4$.
(ii) If $L\{f(t)\}=F(p)$ which exists $\operatorname{Real}(p)>\gamma$ and $H(t)$ is unit step function, then prove that for any $\alpha, L\{H(t-\alpha) f(t-\alpha)\}=e^{-p \alpha} F(p)$, which exists for $\operatorname{Real}(p)>$ γ. $\quad 5+3$
c) i) Reduce the following BVP to an integral equation $y^{\prime \prime}(x)=-\lambda y(x)$ with boundary condition $\mathrm{y}(0)=0, \mathrm{y}(1)=0$.
ii)Define Degenerate kernel with example. 6+2
d) Solve the following boundary value problem in the half place $y>0$, describe by

PDE: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,-\infty<x<\infty, y>0$
BCS: $u(x, 0)=f(x),-\infty<x<\infty$
u is bounded as $\mathrm{y} \rightarrow \infty ; \mathrm{u}$ and $\frac{\partial u}{\partial x}$ both vanish as $|\mathrm{x}| \rightarrow \infty$.

