MCC/22/M.SC./SEM.-II/MTM/1

Total page: 01

PG (CBCS) M.SC. Semester-II Examination, 2023 MATHEMATICS PAPER: MTM 206 (GENERAL TOPOLOGY)

Full Marks: 25

Time: 1 Hour

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any TWO questions from the following: $2 \times 2 = 04$
 - a) Let X and X' denote a single set in the two topologies τ and τ' , respectively. Let $i: X' \to X$ be the identity function. Show that *i* is continuous if and only if τ' is finer than τ .
 - b) Show that \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.
 - c) Show that the order topology on \mathbb{Z}_+ is the discrete topology.
 - d) What do you mean by topological imbedding? Illustrate with an example.

2. Answer any **TWO** questions from the following:

 $2 \times 4 = 08$

- a) Consider the set Y = [-1,1] as a subspace of \mathbb{R} . Which of the following sets are open in Y? Which are open in \mathbb{R} ? 2+2
 - $A = \left\{ x : \frac{1}{2} \le |x| < 1 \right\},$ i)
 - $B = \left\{ x: 0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbb{Z}_+ \right\}$ ii)
- b) Let X and Y be topological spaces and $f: X \to Y$. Prove that f is continuous if and only if $f(\overline{A}) \subset f(A)$, for every subset A of X.
- c) Let Y be an ordered set in the order topology. Let $f.g: X \rightarrow Y$ be continuous. Show that the set $\{x \in X | f(x) \le g(x)\}$ is closed in X.
- d) Show that every compact Hausdorff space is normal.

3. Answer any **ONE** questions from the following:

 $1 \times 8 = 08$ 3+5

3+5

- i) Show that the product of two Hausdorff spaces is Hausdorff.
 - Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation $f(\alpha) = (f_{\alpha}(\alpha))_{\alpha \in J}$, where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Prove that f is continuous if and only if each function f_{α} is continuous.
- b)

a)

ii)

- i) Show that a subspace of a regular space is regular.
- ii) Define Lindelof space. Give example to show that the product of two Lindelof space need not be Lindelof.

[Internal Assessment- 05 Marks] *****