MCC/22/M.	SC./SPLIONE GIVIN
- 02	ST COL
PG CBCS	ESTD 2017
M.Sc. Semester-II Examination, 2023	12 1.
MATHEMATICS	MRALLIBRAS
PAPER: MTM 205	ALCIN.
GENERAL THEORY OF CONTINNUM MECHAN	NICS)

Full Marks: 50

Total pages

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as racticable.

1. Answer any **FOUR** of the following questions:

4×2=08

Time: 2 Hours

- a) Define perfect fluid.
- b) Write the differences between stream line and path line?
- c) Give examples of rotational and irrotational fluid flows.
- d) If the deformation of a body is defined by the displacement components $u_1 = k(3X_1^2 + X_2), u_2 = k(X_2^2 + X_3)$ and $u_3 = k(X_3 + X_1)$ where k > 0. Compute the extension of a line element that passes through the point (1, 1, 1) in the direction $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
- e) Find the complex potential due to a source.
- f) The velocity (u, v, w) of a fluid at a point P(x, y, z) is given by $u = -\frac{2xyz}{x^2+y^2}$, $v = \frac{yz}{x^2+y^2}$ and $w = \frac{z}{x^2+y^2}$. Find the rate at which density of the fluid at appoint P is decreasing in the flow field.
- 2. Answer any **FOUR** of the following questions:

4×4=16

- a) Define principal stress and principal direction of stress. Prove that all principal stresses are real.
- b) Show the equivalence between Eulerian and Lagrangian forms of equations of continuity.
- c) Find the image of a source with respect to a straight line.

d) For the deformation defined by the equations
$$X_1 = \frac{1}{2}(x_1^2 + x_2^2)$$
, $X_2 =$

 $\tan^{-1}\left(\frac{x_2}{x_1}\right), X_3 = x_3, x_1 \neq 0$, find the deformation gradient tensors in material forms. Hence show that the deformation is isochoric.

e) The stress matrix at a point $P(x_i)$ in material is given by

$$(T_{ij}) = \begin{pmatrix} x_1 x_3 & x_3^2 & 0 \\ x_3^2 & 0 & -x_2 \\ 0 & -x_2 & 0 \end{pmatrix}$$

Find the stress vector at the point Q(1,0,-1) on the surface x₁ = x₂² + x₃².
f) Show that the principal directions of strain at each point in a linearly elastic isotropic body must be coincident with the principal directions of stress.

(P.T.O)

2+6

3. Answer any **TWO** of the following questions:

a) State and prove Kelvin's Minimum Energy theorem.

- b) Derive the energy equation for Perfect fluid.
- c) The stress tensor at appoint is given by

$$(T_{ij}) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Determine the principal stresses and corresponding principal directions. Also check on the invariance of θ , θ_2 and θ_3 . 2+4+2

d) Derive the basic elastic constants for isotropic elastic solid.

[Internal Assessment: 10 Marks]

(2)
