PG (CBCS) M.SC Semester- II Examination, 2023 MATHEMATICS PAPER: C-MTM 204A

Full Marks: 50

Total pages: 02

Time: 2 Hours

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

(STATISTICAL AND NUMERICAL METHODS)

GROUP-A 1. Answer any FOUR questions from the following:

 $4 \times 2 = 08$

- a) Find the median of 33, 86, 68, 32, 80, 48, 70, 64.
- b) Define consistent and inconsistent system of linear equations.
- c) Prove that $\Delta \equiv E 1$, $E \equiv \Delta + 1$.
- d) Suppose π is approximated as 3.14 instead of 3.14156, find the absolute, relative and percentage errors.
- e) Find the position of a positive real root of $x^3 3x + 4 = 0$.
- f) What is degree of precision of a quadrature formula.

GROUP-B 2. Answer any FOUR questions from the following:

 $4 \times 4 = 16$

- a) Define absolute, relative and percentage errors. Find the absolute, relative and percentage errors when 2/3 is approximated to 0.667, correct up to six decimal places. 2+2
- b) Obtain Lagrange's interpolating polynomial for f(x) and find an approximate value of the function f(x) at x = 0, given that f(-2) = -5, f(-1) =-1 and f(1) = 1.
- c) Find the iteration schemes to solve the following equation using Newton-Raphson method (correct up to two decimal places) $x^3 - 2x - 5 = 0$. 4
- d) Solve the following differential equation $\frac{dy}{dx} = 3x^2 + y$, y(0) = 0 for $0.1 \le x \le 0.5$, using Euler's method by taking h = 0.1.
- e) Find a location a root of the equation $x^2 5x + 6 = 0$. Use Cramer's rule to solve the systems of equations x + y + z = 2, 2x + y - z = 5, x + y3y + 2z = 5. 4
- f) Find an iteration scheme to find the kth root of a number a.

GROUP-B 3. Answer any TWO questions from the following:

2×8=16

4

- a) Describe the bisection method to find a root of the equation f(x) = 0 when f(a)f(b) < 0, a, b be two specified numbers. Find a root of the equation $x^2 + b^2$ x - 7 = 0 using bisection method, correct up to two decimal places. 3+5
- b) Given $\frac{dy}{dx} = x^2 + y^2$ with x = 0, y = 1. Find y(0.1) by fourth-order Runge-Kutta method by taking h=0.1. (P.T.O)

APORE CITY CO c) Compute correlation co-efficient, regression co-efficient between the advertisement cost (x) and sale (y) as per data given below and also find the lines of regression. Advertiser ant agat

39 65 62 90 82 75 25 98 36 78 in thousand Rs. (x) 39 65 62 90 82 75 25 98 36 78 Sales in Lakhs Rs. (y) 47 53 58 86 62 68 60 91 51 84									-		3+5	
in thousand Rs. (x) 39 65 62 90 82 75 25 98 36 78	Sales in Lakhs Rs. (y)	47	53	58	86	62	68	60	91	51	84	
Advertisement costs		39	65	62	90	82	75	25	98	36	78	

d)

Define the operators: forward difference (Δ), backward difference (∇). Also, prove that $(1 + \Delta)(1 - \nabla) \equiv 1$. i)

- ii) Solve the equations by Gauss elimination method.
 - $2x_1 + x_2 + x_3 = 4,$ $x_1 x_2 + 2x_3 = 2,$ $2x_1 + 2x_2 x_3 = 3.$

[Internal Assessment- 10 Marks]
