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MTM 203.1

ABSTRACT ALCEBRA

1. Answer any TWO questions from the following: 2v.2:04

a) LetG: (R,+), H = (2,*) and G' = ({z e C,:lzl:1},.).Provethat 1= C'.

b) Show that every finite field extension is an algebraic extension.
c) Define Noetherian ring.
d) Determine the degree of tQ(i3+2i2): Ql.

2. Answer any TWO questions from the following:

a) Let 1be an ideal of the Noetherian ring R. Prove the followings:

i) The quotient R/l is a Noetherian ring.

ii) Every nonempty set of ideals of R contains a maxirnal element under

inclusion. 2+2

b) Prove that in a commutative integral domain every prime element is irreducible.
But not conversely.

c) If KcF c L is a tower of fields then show that

[t: F][F: K]:lL: Kl
where [I:F] denotes the degree of L over F.

d) Let FcK,K'be two field extensions of F. Lett!:K-K'be an F- isomorphism. Let
q.eK be a root of /(r)€F[x]. Then {(a) is a root of /(x).

3. Answer any qE questions from the following: I x8:08

a) Dcline Artinian ring u,ith an appropriate example. Prove that therc are only finitely rnany
marrimal idcals in an Arlinian rins. 3+5

Lct E be a field and G a tlnite group o1'autorrorphisms of E. T'hcn shori' that E/Ec
is a finite Calois crtcnsion. 5

Shor.v that lhc Galois group of the Galois extcnsionFn^/F, is a cy'clic group of
order n.
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LINI,,AR ALGEBRA

.1. Answer any TWO questions from the following:

a) Let V be the vector space ofreal continuous functions on the interval -r < t <
z u,itl.r inner product deflned by < f ,S >= I!,f (t)S(r)dr. Then S:
{1, sin f, cos f, sin 2t,cosZt, ... .} is orthogonal, orlhonormal?

b) ts the operator T (z,w) = (-w, z) on C2 self- adjoint? Justify your answer.
c) Justify the stater.nents as true or false

(i) Every linear operator has an adjoint.
(ii) The adjoint of a linear operator is unique.

d) Show that similar matrices have the same minimal polynomial.
5. Answer any TWO questions fronr the following:

a) Let V be tl.re vector space of all polynon.rial functions p from R into R which
have degree 2 or less. Define three functions on V given by fr(p) =

t p(ia, , fr(p) : Ji pT)a, , fz(p) = lr'p(.l)a*. Show that {fr, fr, fr} is a

basis ol7-(dual basis). Detcrnrine a basis for V such that{fr,fr,fr} is its dual
basis.

b) Find all possible Jordan canonical fornts for a linear operator T:V to 7(vector
space) u,here characteristic polynornial is (r - Z)3(t - 5)s. In each case, find
the minirr.ral polynomial m(r).

c) Suppose that T is a normal operator or.r V and that 3 and 4 are eigen values of T.
Prove that there exists avector u € 7 such that llull = ^/2 andllfull = S.

d) Let.4 =

2x2:04

2x4:08

1+l+2
1x8:8

canonical form of A.
6. Answer any ONE questions from the followinq:

a) Reduce the quadratic forrn rr2 + 2xl + xl - zxrx, * Zxrx, to canonical form
through an orthogonal transfbrrnation. Find tl.re nature, rank, index and signature
of it.

b)
i)

ii)

i ii)

o*l*l:l*'
-tf -)f I

Let T and U be self-adjoint operators on an inner product space V. Prove
that TU is self-adjoint if and only if TU-UT.
Let T be a normal operator on a finite-dimensional real inner product space
V whose characteristic polynomial splits. Prove that V has an orlhonormal
basis of eigen vectors of T. Hence prove that T is self-adjoint.
If T is norrnal and I3 : 72, show that T is idempotent. llnormality of T is
dropped, does the conclusion still true?
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