Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

MTM 203.1

ABSTRACT ALGEBRA

1. Answer any TWO questions from the following:
$2 \times 2=04$
a) Let $G=(\mathbb{R},+), H=(\mathbb{Z},+)$ and $G^{\prime}=(\{z \in \mathbb{C}:|z|=1\}$,. $)$. Prove that $\frac{G}{H} \cong G^{\prime}$.
b) Show that every finite field extension is an algebraic extension.
c) Define Noetherian ring.
d) Determine the degree of $[\mathbb{Q}(\sqrt{3}+2 \sqrt{2})$: $\mathbb{Q}]$.
2. Answer any TWO questions from the following: $2 \times 4=08$
a) Let I be an ideal of the Noetherian ring R. Prove the followings:
i) The quotient R / I is a Noetherian ring.
ii) Every nonempty set of ideals of R contains a maximal element under inclusion.
b) Prove that in a commutative integral domain every prime element is irreducible. But not conversely.

4
c) If $K \subseteq F \subseteq L$ is a tower of fields then show that

$$
[L: F][F: K]=[L: K]
$$

where $[L: F]$ denotes the degree of L over F.
d) Let $F \subseteq K, K^{\prime}$ be two field extensions of F. Let $\psi: K \rightarrow K^{\prime}$ be an F - isomorphism. Let $\alpha \in K$ be a root of $f(x) \in F[x]$. Then $\psi(\alpha)$ is a root of $f(x)$.
3. Answer any ONE questions from the following:
$1 \times 8=08$
a) Define Artinian ring with an appropriate example. Prove that there are only finitely many maximal ideals in an Artinian ring.
b)
i) Let E be a field and G a finite group of automorphisms of E . Then show that E / E^{G} is a finite Galois extension.
ii) Show that the Galois group of the Galois extension $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$ is a cyclic group of order n .
4. Answer any TWO questions from the following:

a) Let V be the vector space of real continuous functions on the interval $-\pi \leq t \leq$ π with inner product defined by $\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t$. Then $S=$ $\{1, \sin t, \cos t, \sin 2 t, \cos 2 t, \ldots$.$\} is orthogonal, orthonormal?$
b) Is the operator $T(z, w)=(-w, z)$ on \mathbb{C}^{2} self- adjoint? Justify your answer.
c) Justify the statements as true or false
(i) Every linear operator has an adjoint.
(ii) The adjoint of a linear operator is unique.
d) Show that similar matrices have the same minimal polynomial.
5. Answer any TWO questions from the following:
a) Let V be the vector space of all polynomial functions p from R into R which have degree 2 or less. Define three functions on V given by $f_{1}(p)=$
$\int_{0}^{1} p(x) d x, f_{2}(p)=\int_{0}^{2} p(x) d x, f_{3}(p)=\int_{0}^{-1} p(x) d x$. Show that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis of V^{*} (dual basis). Determine a basis for V such that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is its dual basis.
b) Find all possible Jordan canonical forms for a linear operator $T: V$ to V (vector space) where characteristic polynomial is $(t-2)^{3}(t-5)^{5}$. In each case, find the minimal polynomial $m(t)$.
c) Suppose that T is a normal operator on V and that 3 and 4 are eigen values of T .

Prove that there exists a vector $v \in V$ such that $\|v\|=\sqrt{2}$ and $\|T v\|=5$.
d) Let $A=\left(\begin{array}{lllll}0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Is A nilpotent? If yes, what is its index? Find the canonical form of A. $1+1+2$
6. Answer any ONE questions from the following: $\quad 1 \times 8=8$
a) Reduce the quadratic form $x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$ to canonical form through an orthogonal transformation. Find the nature, rank, index and signature of it .

$$
4+1+1+1+1
$$

b)
$3+3+2$
i) Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint if and only if TU=UT.
ii) Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigen vectors of T . Hence prove that T is self-adjoint.
iii) If T is normal and $T^{3}=T^{2}$, show that T is idempotent. If normality of T is dropped, does the conclusion still true?
[Internal Assessment- 05 Marks]

