PG (CBCS)
 M.Sc Semester- II Examination, 2023
 MATHEMATICS
 PAPER: MTM 202
 (NUMERICAL ANALYSIS)

Time: 2 Hours

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any FOUR questions from the following:
a) Explain the importance of weighted curve fitting.
b) Is LU decomposition method applicable to all systems of linear equation? Explain.
c) Can Power method be used to find the least eigen-value of a matrix? Explain.
d) What are the drawback of Jacobi's method for numerical eigenvalues and eigenvectors?
e) Explain, the iterative methods are better than the direct methods to solve the system of linear equation.
f) Discuss the merits and demerits of finite difference method to solve an ODE.
2. Answer any FOUR questions from the following: $4 \times 4=16$
a) Describe approximation of a continuous function $f(x)$ using orthogonal polynomials.
b) Find the value of $\int_{0}^{2} \frac{x}{1+x^{3}} d x$ using 6-point Gauss-Legendre quadrature formula.
c) Explain a suitable method to solve a tri-diagonal system of linear equations.
d) Use fourth order Runge-Kutta method to solve the second order initial value problem $2 y^{\prime \prime}(x)-6 y^{\prime}(x)+2 y(x)=4 e^{x}$ with $y(0)=1$ and $y^{\prime}(0)=1$ at $x=0.1$.
e) Use Newton-Raphson method to solve the system $x^{2}-2 x-y+0.5=0$, $x^{2}+4 y^{2}-4=0$ with the starting value $\left(x_{0}, y_{0}\right)=(2.00,0.25)$.
f) Solve the following system of equations
$x=\frac{8 x-4 x^{2}+y^{2}+1}{8}$ and $y=\frac{2 x-x^{2}+4 y-y^{2}+3}{4}$
Starting with $\left(x_{0}, y_{0}\right)=(1.1,2.0)$ using fixed-point iteration.
3. Answer any TWO questions from the following:
a) Use Jacobi's method to determine all eigenvalues and the eigenvectors of the real symmetric matrix $A=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3\end{array}\right)$.
b) Define Spline interpolation. Fit a cubic spline for the points $(0,1),(1,0),(2,1)$, $(3,2),(4,1)$ with the conditions $y^{\prime \prime}(0)=y^{\prime \prime}(4)=0 . \quad 2+6$
c) Describe Bairstow method to find all roots of a polynomial equation.
d) Solve the system of equations

$$
\begin{gathered}
2 x+4 y-2 z=14 \\
x+3 y-4 z=16 \\
-x+2 y+3 z=1
\end{gathered}
$$

using LU-decomposition method.

[Internal Assessment -10 Marks]

