PG (CBCS)

M.SC. Semester- I Examination, 2023

APPLIED MATHEMATICS
PAPER: MTM 105
(CLASSICAL MECHANICS AND NON-LINEAR DYNAMICS)
Full Marks: 50
Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any FOUR of the following questions:
a) Using Euler-Lagrange's equation, prove that the shortest distance between two points in a plane is a straight line.
b) Show that the following transformation is canonical $Q=\log \left(\frac{1}{q} \sin p\right), P=q \cot p$.
c) The Lagrangian for a coupled harmonic oscillator is given by

$$
L=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)-\frac{1}{2}\left(w_{1}^{2} q_{1}^{2}+w_{2}^{2} q_{2}^{2}\right)+\alpha q_{1} q_{2}
$$

where α, w_{1}, w_{2} are constants and q_{1}, q_{2} are suitable coordinates. Find the Hamiltonian of the system.
d) What do you mean by non-inertial frame? Give an example of a non-inertial frame.
e) Show that for conservative holonomic dynamical system,

$$
\frac{\partial L}{\partial \dot{q}_{J}}=\int\left(\frac{\partial L}{\partial q_{j}}\right) d t .
$$

f) Write down the component and magnitude of the Coriolis force.

GROUP-B

2. Answer any FOUR of the following questions:
a) Obtain the curve for which the surface revolution is minimum.
b) The Hamiltonian of a dynamical system is given as $H=q p^{2}-q p+b p$ where b is a constant. Solve the problem.
c) If a body in the northern hemisphere falls freely to the ground from a height h, show that it strikes the ground at $\frac{2}{3} w h\left(\frac{2 h}{g_{e}}\right)^{\frac{1}{2}} \cos \lambda$ to the east, where w is the earth's angular velocity, g_{e} is the acceleration. Due to the combined effect of gravity and centrifugal force and λ is the latitude of the place.
d) A uniform string of length l and negligible mass passes over a frictionless pulley. Two masses m_{1} and m_{2} are tied at two ends. Obtain the Lagrangian and write down the Lagrangian equation of motion.
e) Write down the Lagrange's equations when the Lagrangian has the following form $L=\dot{q} q-\sqrt{1-\dot{q}^{2}}$. Show that the following functional

$$
J=\int_{x_{0}}^{x_{1}} \frac{\left(1+y^{2}\right)}{y^{\prime 2}} d x
$$

will be extremum if $y=\sinh \left(c_{1} x+c_{2}\right)$, where c_{1}, c_{2} are arbitrary constant.
f) A body moves about a point Q under no forces. The principal moments of inertia at O being $3 A, 5 A$ and $6 A$. Initially, the angular velocity has components $w_{1}=n, w_{2}=$ $0, w_{3}=n$ about the corresponding principal axes. Show that at any time t,

$$
w_{2}=\frac{3 n}{\sqrt{5}} \tanh \left(\frac{n t}{\sqrt{5}}\right)
$$

and that the body ultimately rotates about the mean axis.

GROUP-C

3. Answer any TWO of the following questions:

a) (i) Prove that $J=\int_{x_{0}}^{x_{1}} F\left(y, y^{\prime}, x\right) d x$ will be minimum only when $\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)-\frac{\partial F}{\partial y}=0$.
(ii) Find the extremum of the function $J=\int_{0}^{\log 2}\left(y+y^{\prime 2}\right) d x$ subject to the boundary condition $y(0)=0$ and $y(\log 2)=1$.
b) Prove that Poisson bracket obeys the distributive law. If X, Y, Z are three dynamical variables, then prove the following:

$$
\begin{array}{ll}
\text { (i) }[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 & \\
\text { (ii) }[X Y, Z]=Y[X, Z]+X[Y, Z] . & 2+4+2
\end{array}
$$

c) Consider the following nonlinear dynamical system.

$$
\frac{d x}{d t}=x^{2} y-x^{5}, \frac{d y}{d t}=-y+x^{2}
$$

Study the stability of the system at the origin.
d) What do you mean by inertial and non-inertial frame of references? Show that with respect to a uniformly rotating reference frame Newton's second law for a particle of mass acted upon by real force \vec{F} can be expressed as
$\vec{F}_{e f f}=\vec{F}-2 m \vec{w} \times \vec{V}_{r o t}-m \vec{w} \times(\vec{w} \times \vec{r})$.
Assume that the origins of the inertial and non-inertial coordinates systems are coincident.
[Internal Assessment-10 Marks]

