GROUP-A

1. Answer any FOUR of the following questions:
a) Prove that $J_{-n}(z)=(-1)^{n} J_{n}(z)$ for integral n.
b) Define Green's function of the differential operator \mathbf{L} of the non-homogeneous differential equation: $L u(x)=f(x)$.
c) Show that $\int_{-1}^{1} P_{n}(z) d z=\left\{\begin{array}{ll}0, & n \neq 0 \\ 2, & n=0\end{array}\right.$ where the symbols have usual meaning.
d) Find all the singularities of the following differential equation and then classify them:

$$
\left(z-z^{2}\right) w^{\prime \prime}+(1-5 z) w^{\prime}-4 w=0
$$

e) Define orthogonal functions associated with Strum-Liouville problem.
f) Prove that: $F(-n ; b, b ;-z)=(1+z)^{n}$ where $F(a ; b, c ; z)$ denotes the hypergeometric function.

GROUP-B

2. Answer any FOUR of the following questions:
a) Show that $J_{0}^{2}(z)+2 \sum_{n=1}^{\infty} J_{n}^{2}(z)=1$ and prove that for real $z,\left|J_{0}(z)\right|<1$, and $\left|J_{n}(z)\right|<\frac{1}{\sqrt{2}}$, for all $n \geq 1$.
b) Show that $1+3 P_{1}(z)+5 P_{2}(z)+7 P_{3}(z)+\cdots+(2 n+1) P_{n}(z)=\frac{d}{d z}\left[P_{n+1}(z)+\right.$ $\left.P_{n}(z)\right]$, where $P_{n}(z)$ denotes the Legendre's Polynomial of degree n.
c) Consider the boundary value problem $\frac{d^{2} y}{d x^{2}}+\lambda y=0,0 \leq x \leq \pi$ subject to $y(0)=$ $0, y^{\prime}(\pi)=0$. Find the eigen values and eigen functions of the problem.
d) Using Green's function method, solve the following differential equation $y^{\prime \prime}-y=$ x, subject to boundary conditions $y(0)=y(1)=0$.

e) Prove that $\int_{-1}^{1} P_{m}(z) P_{n}(z) d z=\frac{2}{2 n+1} \delta_{m n}$, where $\delta_{m n}$ and $P_{n}(z)$ are the Kroneker delta and Legendre's polynomial respectively.
f) Show that $\sqrt{\frac{\pi z}{2}} J_{\frac{3}{2}}(z)=\frac{1}{z} \sin z-\cos z$.

GROUP-C

3. Answer any TWO of the following questions:

$2 \times 8=16$
a) (i) Find the general solution of the homogeneous system $\frac{d X}{d t}=$ $\left(\begin{array}{ccc}7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1\end{array}\right), X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
(ii) Show that $n P_{n}(z)=z P_{n}^{\prime}(z)-P_{n-1}^{\prime}(z)$, where $P_{n}(z)$ denotes the Legendre's Polynomial of degree n.
b) (i) Derive the Rodrigue's formula for Legendre's polynomial
(ii) Show that $(n+1) P_{n+1}(z)+n P_{n-1}(z)=(2 n+1) z P_{n}(Z)$.

4+4
c) (i) Prove that if $f(z)$ is continuous and has continuous derivatives in $[-1,1]$ then $f(z)$ has unique Legendre's series expansion is given by $f(z)=\sum_{n=0}^{\infty} C_{n} P_{n}(z)$ where P_{n} 's are Legendre Polynomials $C_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(z) P_{n}(z), n=1,2,3, \ldots$
(ii) Prove that $\frac{d}{d z}\left[J_{0}(z)\right]=-J_{1}(z)$. $\quad 6+2$
d) (i) Find the general solution of the ODE $2 z w^{\prime \prime}(z)+(1+z) w^{\prime}(z)-k w=0$. (where k is a real constant) in series form for which values of k is there a polynomial solution?
(ii) Deduce the integral formula for hypergeometric function.
$5+3$

