## GROUP-A

## 1. Answer any FOUR of the following questions:

a) State Morera's theorem.
b) Find residue of $f(z)=\frac{1}{2+z^{2}-2 \cosh z}$ at $z=0$.
c) Suppose $z_{1}, z_{2}, z_{3}, z_{4}$ are any four different points of a circle. Prove that the cross ratio is real.
d) Is it possible to evaluate the integral
$\int_{C} f(z) d z$ where $\mathrm{f}(\mathrm{z})=(5 \mathrm{z}+2) /(\mathrm{z}(\mathrm{z}-2))$ and $\mathrm{C}:|\mathrm{z}|=1$ using the single residue of $\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$ at $\mathrm{z}=0$ ? Justify.
e) Find the Mobious transformation that maps $1,0,-1$ to the respective points i, $\infty, 1$
f) Find the order of the pole at $z=\frac{\pi}{4}$ of the function $f(z)=\frac{1}{\cos z-\sin z}$.

## GROUP-B

## 2. Answer any FOUR of the following questions:

a) Let $f(z)=z-1$ and $C$ is the arc from $z=0$ to $z=2 \pi$ consisting the semicircle $z=1+e^{i t}$. Find $\int_{C} f(z) d z$.
b) Find Laurent series expansion of $f(z)=\frac{1}{z-1}-\frac{1}{z-2}$ on $1<|z|<2$. Hence calculate the residue.
c) Use Rouche's Theorem, to determine the number of zeros of the polynomial $p(z)=$ $z^{10}-6 z^{9}-3 z+1$.
d) Find the inverse of the bilinear transformation $f(z)=\frac{a z+b}{c z+d}$ and show that this inverse function is also a bilinear. Also show that the determinants of both the transformations are the same.
e) With the help of residue, find the inverse Laplace transformation $\mathrm{f}(\mathrm{t})$ of $F(s)=$ $\frac{s}{\left(s^{2}+a^{2}\right)^{2}}(a>0)$
f) Prove that the zeros of an analytic function are isolated.

## GROUP-C

## 3. Answer any TWO of the following questions:

a) (i) Prove that $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}=1$ corresponding to the transformation $u=$ $u(x, y), v=v(x, y)$, where $\frac{\partial(u, v)}{\partial(x, y)}$ denotes the Jecobian of the transformation.
(ii) Prove that $\int_{0}^{\infty} \frac{x^{4}}{x^{6}-1} d x=\frac{\pi \sqrt{3}}{6}$. $3+5$
b) Prove that the set of all bi-linear transformations forms a non-abelian group under the product transformation.
c) (i) Using the method of residues, evaluate $\int_{0}^{\alpha} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{dx}$ where $-1<\mathrm{a}<3$ and $x^{a}=$ $\exp (a \ln x)$.
(ii) Find the singular points of the function $z|z|$, if any. Justify your answer.
$6+2$
d) (i) Define the direct analytic continuation of an analytic function.
(ii) Use the Schwarz-Chritoffel transformation to arrive at the transformation $w=$ $z^{m}(0<m<1)$, which maps the half plane $y \geq 0$ onto the wedge $|w| \geq 0,0 \leq$ $\arg w \leq m \pi$ and transforms the point $\mathrm{z}=1$ onto the point $\mathrm{w}=1$.

## [Internal Assessment-10 Marks]

