PG CBCS

M.Sc. Semester-IV Examination, 2022

PHYSICS

PAPER: PHS 401

(Particle Physics \& Statistical Mechanics-II)
Full Marks: 40
Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS 401.1 Particle Physics

Marks: 20
GROUP-A

1. Answer any two questions:

a) In Natural unit, Show that $1 \mathrm{Sec}=1.5 \times 1024 \mathrm{GeV}^{-1}$
b) Show that time reversal operator is anti linear.
c) Which interactions are responsible for the below process?
(i) $\pi^{-}+p \rightarrow \kappa^{0}+\Sigma^{0}$
(ii) $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$
d) What is the difference between a pseudoscalar meson and a vector meson?

GROUP-B
2. Answer any two questions:
a) Consider the decay of κ^{0} meson of momentum p_{0} into and of momentum π^{+}and $\pi+$ in the opposite direction such that $\mathrm{p}_{+}=2 \mathrm{p}$. . Find $\mathrm{p}_{0} .\left(m_{\kappa^{0}}=498 \mathrm{MeV} / \mathrm{C}^{2}, \quad m_{\pi^{ \pm}}=140 \mathrm{MeV} / \mathrm{C}^{2}\right)$
b) State and prove CPT theorem.
c) In $S U(3)$ multiplets, prove that $3 \otimes 3=6 \oplus \overline{3}$. How many symmetric and antisymmetric states are there?
d) State that $\pi^{-}+d \rightarrow n+n+\pi^{0}$ cannot occur for pions at rest.

GROUP-C

3. Answer any one questions:
$1 \times 8=8$
a) Construct the famous Gell-Mann Matrices and identify the iso-spin states of each particle in the meson octet.
b) What is $\tau-\Theta$ puzzle? How it is resolved? Show that $e^{+} e^{-} \rightarrow 2 \gamma$ is forbidden.

Marks: 20

GROUP-A

1. Answer any two questions:
a) Plot the temperature dependence of fugacity for BE and FD statistics.
b) If $E=\frac{3}{2} N k_{B} T \frac{B_{5 / 2}(\alpha)}{B_{3 / 2}(\alpha)}$ where $\alpha=-\mu \beta$, show that $C_{r} \propto T^{3 / 2}$ in case of BE condensation at
$\left.\mathrm{T}<\mathrm{T}_{\mathrm{c}} . \mathrm{c}\right)$ Using $\ln \mathrm{G}_{z}=-\sum \ln \left(1-\eta e^{-\beta E_{i}}\right)$ Show that the number of particles in the ground state, $N_{0}=\frac{\eta}{1-\eta}$ Where η is the fugacity.
d) Consider 4 spin half particle system. How many microstates are possible for total magnetic moment zero?

GROUP-B

2. Answer any two questions:
a) For BE condensation, prove that $\mathrm{F}=-\frac{2}{3} \mathrm{E}$. at $\mathrm{T}<\mathrm{Tc}$
b) If, $\hat{H}=\frac{p_{x}^{2}}{2 m}+\frac{1}{2 m}\left(\mathrm{p}_{y}+\frac{e x \vec{H}}{c}\right)^{2}+\frac{p_{z}^{2}}{2 m}$ show that \dot{y} is not a constant of motion, although p_{y} constant. $\hat{H}=$ magnetic field along z -direction.
c) Find an expression of Fermi energy for 2D metallic system.
d) Prove that free energy of photon gas is $\mathrm{F}=-\frac{a}{3} \mathrm{VT}^{4}$, where ' a ' is a constant.

GROUP-C

3. Answer any one questions:
a) In Ising model prove that long range order parameter $L(T)=\tanh \mu_{0} \beta\left(H+\frac{\gamma J_{e} L}{\mu_{0}}\right)$, where $\gamma=n . n$ and other symbols has their usual meaning.
b) Prove that average occupation number $\langle N\rangle=\frac{z V}{\lambda^{3}} \frac{\mathrm{x}}{\sinh (\mathrm{x})}$, in Case of Landau
diamagnetism. Where $x=\frac{\beta \hbar e H}{2 m c}, \lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}}$ and $z=e^{\mu \beta}$.
