PG CBCS

M.Sc. Semester-IV Examination, 2022 PHYSICS

PAPER: PHS 401

(Particle Physics & Statistical Mechanics-II)

Full Marks: 40

Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS 401.1 Particle Physics

Marks: 20

GROUP-A

1. Answer any two questions:

 $2\times2=4$

- a) In Natural unit, Show that 1 Sec = $1.5 \times 1024 \text{ GeV}^{-1}$
- b) Show that time reversal operator is anti linear.
- c) Which interactions are responsible for the below process?

(i)
$$\pi^- + p \rightarrow \kappa^0 + \Sigma^0$$

(ii)
$$e^+ + e^- \rightarrow \mu^+ + \mu^-$$

d) What is the difference between a pseudoscalar meson and a vector meson?

GROUP-B

2. Answer any two questions:

 $2 \times 4 = 8$

- a) Consider the decay of κ^0 meson of momentum p_0 into and of momentum π^+ and π^+ in the opposite direction such that $p_+ = 2p_-$. Find p_0 . ($m_{\kappa^0} = 498 \text{ MeV/C}^2$, $m_{\pi^\pm} = 140 \text{ MeV/C}^2$)
- b) State and prove CPT theorem.
- c) In SU(3) multiplets, prove that $3\otimes 3=6\oplus \bar{3}$. How many symmetric and antisymmetric states are there?
- d) State that $\pi^- + d \rightarrow n + n + \pi^0$ cannot occur for pions at rest.

GROUP-C

3. Answer any one questions:

1×8=8

- a) Construct the famous Gell-Mann Matrices and identify the iso-spin states of each particle in
- b) What is τ Θ puzzle? How it is resolved? Show that $e^+e^- \to 2\gamma$ is forbidden.

(Turn Over)

PHS 401.2 Statistical Mechanics-II

Marks: 20

GROUP-A

1. Answer any two questions:

 $2 \times 2 = 4$

a) Plot the temperature dependence of fugacity for BE and FD statistics.

b) If
$$E = \frac{3}{2}Nk_BT\frac{B_{5/2}(\alpha)}{B_{3/2}(\alpha)}$$
 where $\alpha = -\mu\beta$, show that $C_V \propto T^{3/2}$ in case of BE condensation at

T<T_{c.}c) Using InG_z = $-\sum \ln \left(1 - \eta e^{-\beta E_t}\right)$ Show that the number of particles in the ground state,

 $N_0 = \frac{\eta}{1 - \eta}$ Where η is the fugacity.

d) Consider 4 spin half particle system. How many microstates are possible for total magnetic moment zero?

GROUP-B

2. Answer any two questions:

a) For BE condensation, prove that $F = -\frac{2}{3}$ E. at T<Tc

constant. \hat{H} = magnetic field along z-direction.

- c) Find an expression of Fermi energy for 2D metallic system.
- d) Prove that free energy of photon gas is $F = -\frac{a}{3}VT^4$, where 'a' is a constant.

GROUP-C

3. Answer any one questions:

1×8=8

- a) In Ising model prove that long range order parameter $L(T) = \tanh \mu_0 \beta \left(H + \frac{\gamma J_e L}{\mu_0} \right)$, where $\gamma = n.n$ and other symbols has their usual meaning.
- b) Prove that average occupation number $\langle N \rangle = \frac{zV}{\lambda^3} \frac{x}{\sinh(x)}$, in Case of Landau

diamagnetism. Where
$$x = \frac{\beta \hbar e H}{2mc}$$
, $\lambda = \frac{h}{\sqrt{2\pi m k_B T}}$ and $z = e^{\mu\beta}$.
