Total page: 02

PG CBCS M.Sc. Semester-II Examination, 2022 PHYSICS

PAPER: PHS202

(SOLID STATE-II & SEMICONDUCTOR PHYSICS) Full Marks: 40

Time: 2 Hours

CITYC

ESTD 20

CENTRA

ANDIN

Write the answer for each unit in separate sheet The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

PHS 202.1 Solid State-II

Marks: 20

GROUP-A

1. Answer any two questions:

2. Answer any two questions:

a) Define penetration depth for a superconductor. What is its value at the critical temperature? b) What is vortex state of a superconductor?

c) Explain 'Magnetic Levitation. Write down its one application.

d)Write down the expression of Local field (Lorentz relation) for a spherically symmetric dielectric and explain each term.

GROUP-B

$2 \times 4 = 8$

a) What is isotope effect? Mercury having an average atomic mass of 200.59 amu has a critical temperature of 4.153 K. Calculate the critical temperature of the isotope Hg_{80}^{204}

b) Graphically show the variation of (i) Gibbs free energy (G), specific heat (C) and energy gap (ΔE) with temperature (T), at normal and superconducting state.

c) Describe complex dielectric constant and dielectric loss.

d) Explain electronic and dipolar polarizability. Review their temperature dependency.

GROUP-C

3. Answer any one questions:

1×8=8

 $2 \times 2 = 4$

a) Derive London equation and explain how its solution explains Meissner effect. b) Deduce Clausius-Mosotti relation and explain its use in predicting the dielectric constant of

solid. Silicon has the dielectric constant 12, and the edge-length of the conventional cubic cell of Silicon lattice is 5.43 Å. Calculate the electronic polarizability of Silicon atom.

(Turn Over)

PHS 202.2 Semiconductor Physics Marks: 20 **GROUP-A**

1. Answer any two questions:

a) What is degenerate and non-degenerate semiconductor?

b) What is Einstein's relation of diffusion in a semiconductor? c) Draw the variation of density of hole in valence band for a non-

degenerate semiconductor. d) Why CdTe is used in solar cell?

GROUP-B

2. Answer any two questions:

a) Derive expression for density of electron in degenerate semiconductor. b) Derive the electric neutrality condition for a semiconductor.

c)Show how Fermi level of a semiconductor is related with temperature for a low temperature region.

d)Derive the expression for the depression temperature for a semiconductor.

GROUP-C

1×8=8

3. Answer any <u>one</u> questions: a) Derive the diode equation. Discuss the I-V characteristic of a diode from diode equation. (6+2)

b) Explain the mechanism of generation of photovoltage in solar cell with a neat band diagram. Find an expression of efficiency of a solar cell. (3+5)
