PG CBCS

M.Sc. Semester-I Examination, 2022

PHYSICS
PAPER: PHS 101
(METHODS OF MATHEMATICAL PHYSICS - I \& CLASSICAL MECHANICS)

Write the answer for each unit in separate sheet
 UNIT- PHS 101.1
 METHODS OF MATHEMATICAL PHYSICS-I GROUP-A

1. Answer any TWO from the following questions:
a) Evaluate $\varepsilon^{i j k} \varepsilon_{i j k}$ in 3 dimensions.
b) If $A=\left(\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right)$ Show that $(I-A)(I+A)^{-1}$ is unitary
c) $\Psi_{1}=\left(\begin{array}{l}1 \\ 3 \\ 4 \\ 2\end{array}\right) ; \Psi_{2}=\left(\begin{array}{c}3 \\ -5 \\ 2 \\ 2\end{array}\right) ; \Psi_{3}=\left(\begin{array}{c}2 \\ -1 \\ 3 \\ 2\end{array}\right)$ Are these vectors linearly independent?
d) If $(d s)^{2}=(d r)^{2}+r^{2}(d \theta)^{2}+r^{2} \sin ^{2} \theta(d \varphi)^{2}$, Find [22,1] in terms of r, θ and φ.

GROUP-B

2. Answer any TWO from the following questions:
a) State and prove Schwarz inequality.
b) If $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, Find $A^{\text {so }}$.
c) Expand in Taylor's series $\frac{z-1}{z+1}$ about the point $\mathbf{z}=1$.
d) Using residue theorem, show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}}=\frac{2 \pi a^{2}}{1-a^{2}} \quad\left(\mathrm{a}^{2}<1\right)$.

GROUP-C

3. Answer any ONE from the following questions:
$1 \times 8=8$
a) If $\omega_{0}=1, \omega_{1}=x, \omega_{2}=x^{2}$ use these functions to obtain three Hermite polynomials $H_{0}(x), H_{1}(x), H_{2}(x)$ by use of the Gram-Schmidt Orthogonalization process.(8)
b) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$ using residue theorem. (8)

UNIT- PHS 101.2 CLASSICAL MECHANICS
 GROUP-A

1. Answer any TWO of the following questions:
$2 \times 2=4$
a) If the Hamiltonian of a system does not involve time (\mathbf{t}) explicitly, show that the generating functions $S(q, P, t)$ and $W(q, P)$ are then related to each other by the relation $S(q, P, t)=W(q, P)-\alpha_{1} t$ where α_{1} is a constant for separation of variable method.
b) If $p(t+T)=p(t)+T[p, H]+\frac{T^{2}}{2!}[[p, H], H]+\frac{T^{3}}{3!}[[[p, H], H], H]+\ldots .$. , then show that for a harmonic oscillator, $p(T)=-\omega X_{0} \sin \omega T+\frac{p_{0}}{m} \cos \omega T$.
c) Show that $\Delta \int_{i_{1}}^{k_{2}} \sum_{k} p_{k} q_{k} d t=\delta \int_{i_{1}}^{t_{k}} \sum_{k} L d t+(L+H)[\Delta t]_{t_{1}}^{l_{1}}$.
d) Obtain the Hamilton-Jacobi equation from time-dependent Schrodinger equation.

GROUP-B

2. Answer any TWO of the following questions:

$$
2 \times 4=8
$$

a) Show that, $\sum_{k=1}^{n}\left(T_{j k} \xi_{k}+V_{j k} \xi_{k}\right)=0$ for Lagrange's equation of motion for small oscillations of a system in the neighbourhood of stable equilibrium.
b)Verify whether the following transformation is a contact transformation: $Q=\log \frac{\sin p}{q}, P=q \cot p$ Find the generating function F_{1}.
c) Define stable, unstable and natural equilibrium of a system.
d) Show the gauge invariance of Lagrangian of a system.

GROUP-C

3. Answer any ONE of the following questions:

(a) (i) Write down Jacobi's form of least action principle. Derive Hamilton's canonical equations using Hamilton's principle. (ii) $L=\frac{1}{2} q^{2}-q q+q^{2}$, find p in terms of q, \dot{q} and calculate $\left[p, q^{2}\right]$.
(b)(i) If the Generating function be $S(q, P, t)$, then prove that Hamilton-Jacobi equation is to be $H+\frac{\partial S(q, P, t)}{\partial t}=0$. (ii) A particle is thrown vertically upward with an initial velocity u against the attraction due to gravity. Write down the Hamilton-Jacobi for the motion and obtain general solution of the equation of motion.
