PG CBCS

M.SC. Semester-IV Examination, 2022

MATHEMATICS
PAPER: MTM 404B
(NONLINEAR OPTIMIZATION)

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1.Answer any four questions of the following:
$4 \times 2=8$
a) Define posynomial and polynomial in connection with geom programming problem with example.
b) Define bi-matrix game with example.
c) Write the advantages of geometric programming problem.
d) Define Pareto optimal solution in a multi-objective non-linear ENTRAL programming problem.
e) State Kuhn-Tucker stationary point necessary optimality theorem.
f) What are the basic differences between the necessary criteria and sufficient criteria of Fritz-John saddle point problem.

GROUP-B

2. Answer any four questions of the following:
a) Prove that all strategically equivalent bi-matrix game have the same Nash equilibrium.
b) Derive the Kuhn-tucker condition for quadratic programming problem.
c) Find the minimum value of $f(X)$ by geometric programming $\operatorname{Min} f(X)=7 x_{1} x_{2}^{-1}+3 x_{2} x_{3}^{-2}+5 x_{1}^{-3} x_{2} x_{3}+x_{1} x_{2} x_{3}$.
d) State and Prove weak duality theorem in connection with duality in non-linear programming
e) Let θ be a numerical differentiable function on an open convex set $\Gamma \subset \mathbb{R}^{n} . \theta$ is convex if and only if $\theta\left(x^{2}\right)-\theta\left(x^{1}\right) \geqq \nabla \theta\left(x^{1}\right)\left(x^{2}-\right.$ x^{1})for each $x^{1}, x^{2} \in \Gamma$. Prove it.
f) Write the relationship among the solutions of minimization Problem (MP), local minimization problem (LMP), the Fritz-John stationary point problem (FJP), the Fritz-John saddle point problem (FJSP), the Kuhn-Tucker saddle point problem.

GROUP-C

3. Answer any two questions of the following:

a) How do you solve the following geometric programming problem?

Find $X=\left\{\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right\}$ that minimizes the objective function $f(x)=\sum_{j=1}^{N} U_{j}(x)=\sum_{j=1}^{N}\left(c_{j} \prod_{i=1}^{n} x_{i}^{a_{i j}}\right)$
$c_{j}>0, x_{i}>0, a_{i j}$ are real numbers, $\forall i, j$.

b) Using the chance-constrained programming technique to find an equivalent deterministic LPP of the following stochastic programming problem.

$$
\begin{gathered}
\text { Minimize } F(x)=\sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } P\left[\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}\right] \geq p_{i} \\
\qquad x_{j} \geq 0, i, j=1,2, \ldots, n
\end{gathered}
$$

When b_{i} is a random variable and p_{i} is a specified probability.
c) Solve the quadratic programming problem using Wolfe's method

$$
\begin{gathered}
\text { Maximize } z=2 x_{1}+3 x_{2}-2 x_{1}^{2} \\
\text { subject to } x_{1}+4 x_{2} \leq 4 \\
x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0 \\
* * * * * *
\end{gathered}
$$

