PG CBCS ### M.Sc. Semester-IV Examination, 2022 ### **MATHEMATICS** PAPER: MTM 403 (MAGNETO HYDRO-DYNAMICS & STOCHASTIC PROCESS & REGRESSION) Full Marks: 40 Time: 2 Hours ### Write the answer for each unit in separate sheet The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. MTM 403.1: MAGNETO HYDRO-DYNAMICS ### **GROUP-A** ### 1. Answer any two question: - a) Define the term magnetic diffusivity. - b) State Ferraro's law of isorotation. - c) Write down the statement of Alfven's theorem - d) Define magnetic pressure and write its significance for the motion of conducting fluid. ### **GROUP-B** ### 2. Answer any two questions: $2\times4=8$ - a) Write down the basic equations of mageto-hydrodynamics and hence deduce the magnetic induction equation in MHD flows. - b) Prove that in a steady non-uniformly rotating star, the angular velocity must be constant over the surface traced out by the rotation of the magnetic lines of force about the magnetic field axis. - c) Define magnetic energy and further, find the rate of change of magnetic energy in magneto-hydrodynamic. - d) Deduce magnetic induction equation. ### **GROUP-C** ### 3. Answer any one questions: 8×1=8 a) Define Couette flow. Give the mathematical formulation of magetohydrodynamic Couette flow and derive its velocity and magnetic field expression. [P. T. O] [2] b) A viscous, incompressible conducting fluid of uniform density are confined between a channel made by an infinitely conducting horizontal plate z = -L (lower) and a horizontal infinitely long non-conducting plate z = L (upper). Assume that a uniform magnetic field H0 acts perpendicular to the plates. Both the plates are in rest. Find the velocity of the fluid and the magnetic field. # MTM 403.2: STOCHASTIC PROCESS & REGRESSION ### GROUP-A ## Answer any two question: 2x2=4 - a) Define doubly stochastic matrix - b) What is Ergodic process? - c) Define multiple correlation and partial correlation. - d) Write the transition matrix for the problem of random walk between reflecting barriers. ### GROUP-B Answer any two questions 2×4=8 - a) Prove that for a Markov chain, state j is persistent iff $\sum_{n=0}^{\infty} p_{jj}^{(n)} = \infty$. - b) State and prove Chapman-Kologorov equation. - c) Derive the equation of the plane of regression containing three variables. - d) Let $\{1/n : n \ge 0\}$ be a Markov chain with three states 0,1,2 and with transition matrix $$\begin{pmatrix} 3/_4 & 1/_4 & 0 \\ 1/_4 & 1/_2 & 1/_4 \\ 0 & 3/_4 & 1/_4 \end{pmatrix}$$ and the initial distribution $P(X_0 =$ $$i) = \frac{1}{3}, i = 0, 1, 2$$. Find (i) $$P(X_2 = 2, X_1 = 1 | X_0 = 2)$$ (ii) $$P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$$ [P. T. 0] ### MCC/20/M.Sc./SEM.-IV/MTM/1 [3] GROUP-C 1×8=8 # 3. Answer any one questions: - a) State birth and death process. Find the differential-difference equation for birth and death process. - b) Establish First Entrance Theorem. Consider the Markov chain on the state space {1, 2, 3, 4} with transition probability matrix \[\begin{pmatrix} \frac{1}{3} & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{pmatrix} \] The probability matrix is the probability of probab Identify the states as transient, persistent, ergodic. 3+1+4 ****