PG CBCS

M.Sc. Semester-IV Examination, 2022 MATHEMATICS

PAPER: MTM 402

(FUZZY MATHEMATICS WITH APPLICATIONS & SOFT COMPUTING)

Full Marks: 40

Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

MTM 402.1: FUZZY MATHEMATICS WITH APPLICATIONS

GROUP-A

1. Answer any two question:

 $2 \times 2 = 4$

- a) Define fuzzy set. Write three examples of real-life fuzzy sets including its membership functions.
- b) Find α -cut of triangular fuzzy number $\tilde{A} = (2, 8, 12)$ for $\alpha = 0.4 \& 0.6$.
- c) Give two examples for each random and non-random uncertainty.
- d) Define with proper example: (i) empty fuzzy set and subset of a fuzzy set,
- (ii) relation on fuzzy sets.

GROUP-B

2×4=8

- 2. Answer any two questions:
 - a) Prove that distribution law for fuzzy sets is true.
 - b) Illustrate Zadeh's Extension principle. Use it, show that [4, 7]-[1, 5]=[-1, 6]
 - c) Graphically explain how a triangular fuzzy number $\tilde{A}=(1,5,13)$ can be expressed in the form $\tilde{A}=\cup\{\alpha A_\alpha:0<\alpha\le 1\}$, where \cup denotes the standard fuzzy union, αA_α is a special fuzzy set define as $\mu_{\alpha A_\alpha}(x)=\alpha \wedge \chi_{A_\alpha}(x)$ and χ is a characteristic function of a crisp set.
 - d) Consider the two triangular fuzzy numbers \tilde{A} and \tilde{B} with the following membership functions given by

$$\mu_{\tilde{A}}(x) = \begin{cases} 0, & x \le -1 \\ \frac{x+1}{2}, & -1 \le x \le 1 \\ \frac{3-x}{2}, & 1 \le x \le 3 \\ 0, & x \ge 3 \end{cases} \qquad \mu_{\tilde{B}}(x) = \begin{cases} 0, & x \le 1 \\ \frac{x-1}{2}, & 1 \le x \le 3 \\ \frac{5-x}{2}, & 3 \le x \le 5 \\ 0, & x \ge 5 \end{cases}$$

[P. T. O]

2

 $\tilde{A}-\tilde{B}$. Using α - cut rules perform the following arithmetic operations: (i) $\tilde{A}+\tilde{B}$ (ii)

GROUP-C

Answer any one questions:

8×1=8

- a) Illustrate the Bellman and Zadeh's principle for fuzzy LPP. Explain Werner's method to convert the fuzzy LPP to crisp LPP SK CITY C
- b) For the fuzzy set A, where

$$\mu_{A}(x) = \begin{cases} \left| \frac{x-5}{3} \right|, & 2 \le x \le 8 \\ 0, & \text{otherwise} \end{cases}$$

MIDNAR

ESTD 2017

CENTRALLIBY

iv) Check whether the given fuzzy set is convex or not cut of \tilde{A} iii) Determine the support and height for the fuzzy set \tilde{A} . Is it i) Find \tilde{A}^c the complement of \tilde{A} ii) Find $\tilde{A}_{0.3}$, $\tilde{A}_{0.5}$ where \tilde{A}_{α} , is the α normal'

2+2+2+2

MTM 402.2: SOFT COMPUTING

GROUP-A

Answer any two question:

2x2=4

- Write the features of soft computing
- b) Write the disadvantages of binary coded genetic algorithm.
- c) Explain the reinforcement learning process
- d) What is single layer feed forward network.

GROUP-B

Answer any two questions:

- Describe the two operations cross-over and mutation for a binary coded Genetic Algorithm.
- b) Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c\}$ be two universes of discourses (3,0.8), (4,0.7) and $\tilde{C} = \{(a,0.1), (b,0.6), (c,0.9)\}$. Determine the fuzzy Also, let $\tilde{A} = \{(1,0.2), (2,0.5), (3,0.7), (4,1.0)\}\tilde{B} = \{(1,0.3), (2,0.4), (2,$ relation of the following fuzzy rule "IF x is \tilde{A} AND x is \tilde{B} THEN y is \tilde{C} "

[P. T. 0]

MCC/20/M.Sc./SEM.-IV/MTM/1

c) Define max-min composition. Suppose R and S be two relations on $X \times Y$ and $Y \times Z$ respectively. Find the Max-Min composition of $R \circ S$, where

$$R = \begin{pmatrix} 0.2 & 0.8 & 0.0 & 0.9 \\ 0.5 & 0.5 & 0.8 & 0.7 \\ 0.7 & 0.1 & 0.3 & 0.6 \\ 0.9 & 1.0 & 0.8 & 0.0 \end{pmatrix}, S = \begin{pmatrix} 0.1 & 0.0 & 0.4 & 0.4 \\ 0.4 & 0.5 & 0.9 & 0.2 \\ 0.8 & 0.1 & 0.0 & 0.6 \\ 0.0 & 0.0 & 0.1 & 0.0 \end{pmatrix}$$

d) Describe two important fuzzy inference rules with clearly mention the purpose of used.

GROUP-C

Answer any one questions:

1×8=8

a) Write an algorithm of Hebbian Learning Rule for an artificial neural network. Use it solve the following pattern matching problem:

	1	1	T		1		
×	×	×	×				
-	4	4	4	*	INPUT		
-4	1	_	1	,3			
۵	_			ъ			
۲,	ુ≺	× ×	۲,		TARGET		
,	4	-	4	¥			

ESTD 2017

b) Maximize f(x) = |2x + 1|; $0 \le x \le 10$ using binary coded GA (one 0.49, 0.01, 0.18, 0.09, 0.82, 0.26, 0.43, 0.08 0.09, 0.14, 0.82, 0.08, 0.21, 0.37, 0.20, 0.25, 0.72, 0.24, 0.16, 0.47, 0.58 numbers for mutation: 0.21, 0.37, 0.02, 0.52, 0.07, 0.97, 0.04, 0.61, 0.17, 0.85, 0.57, 0.37, 0.70, 0.32; mutation probability, $p_m = 0.05$; and random cross-over probability, $p_c = 0.65$; random numbers for cross-over: 0.60, 01111; random numbers for selection: 0.19, 0.63, 0.97, 0.11, 0.70, 0.51; 10011, $x_2 = 10101, x_3 = 10110, x_4 = 11100, x_5 = 01010, x_6 = 010$ iteration only). Given that population size N=6; initial population $x_1=$