# PG CBCS M.SC. Semester-IV Examination, 2022 **MATHEMATICS** PAPER: MTM 401 (FUNCTIONAL ANALYSIS)

### Full Marks: 40

#### **Time: 2 Hours**

ESTD 2017

MALLIP

The figures in the right-hand margin indicate full marks.

PORECITY Candidates are required to give their answers in their own words as far as practicable.

#### **GROUP-A**

## 1. Answer any four questions of the following:

a) Let T be a linear transformation between two normed spaces. Prove that if T is continuous at 0 then T is continuous.

b) State inverse mapping theorem.

c) Let X be a normed space. Show that  $x_n \rightarrow x$  weakly in X does not imply  $x_n \rightarrow x$  in X in general.

d) Show that every normed space can be embedded as a dense subspace of a Banach space.

e) Let H be a Hilbert space and F be a closed subspace of H. Prove that  $H = F + F^{\perp}.$ 

f) Let  $T \in BL(H)$  be self-adjoint. Show that  $Ker(T)=Ker(T^*)$ .

#### **GROUP-B**

#### 2. Answer any four questions of the following: 4×4=16

a) If (V, ||, ||) is a normed space and M is a finite dimensional subspace of V. Prove that M is closed.

b) Show that  $\langle Ae_i, e_i \rangle = (i+j+1)^{-1}$  for  $0 \le i, j \le \infty$  defines a bounded operator on  $l^2(\mathbb{N} \cup \{0\})$  with  $||A|| \le \pi$ .

c) (i) Define best approximation from a set to a point.

(ii) Let X be an inner product space and E be a convex subset of X. Prove that there exists at most one best approximation from E to any  $x \in X$ .

d) (i) Define adjoint operator.

## [P. T. O]

(ii) Let  $T \in B(H, Y)$  where H is a Hilbert space and Y is an inner

product space. Prove that the adjoint  $T^*$  of T is the unique mapping of Y

into *H* such that  $\langle Tx, y \rangle = \langle x, T^*y \rangle, \forall x \in H \text{ and } y \in Y$ .

e) Let  $S \in BL(H)$ , where H is a Hilbert space. Prove that for all  $x, y \in$ 

 $H, <Sx, y > = \frac{1}{4} \sum_{n=0}^{3} i^n < S(x+i^n y), (x+i^n y) >.$ 

f) Give an example to show that the completeness of the domain is an essential requirement in the Uniform Boundedness Principle.

# **GROUP-C**

# 3. Answer any two questions of the following:



AE CITY C

a) (i) If X is a normed space, M is a closed subspace of X, x<sub>0</sub>∈X\M and d=dist(x<sub>0</sub>, M), show that there is an f∈X\* such that f(x<sub>0</sub>)=1, f(x)=0 for all x∈M and lfl=d<sup>-1</sup>.

(ii) Let S be the Unilateral shift operator. Show that  $S^{*^n} \xrightarrow{S} 0$  but not uniformly.

b) Let,  $\{u_1, u_2, u_3, ...\}$  be an orthogonal set in an inner product space X and let  $k_1, k_2, k_3, ... \in \mathbb{C}$ .

(i) If  $\sum_{n=1}^{\infty} k_n u_n$  converges to some  $x \in X$ , then prove that  $k_n = \langle x, u_n \rangle$  and  $\sum_{n=1}^{\infty} |k_n|^2 < \infty$ .

(ii) If X is a Hilbert space and  $\sum_{n=1}^{\infty} |k_n|^2 < \infty$ , prove that  $\sum_{n=1}^{\infty} k_n u_n$  converges in X.

c) (i) Let  $S, T \in BL(H, Y)$  and  $\alpha \in \mathbb{C}$ , prove that  $(S + T)^* = S^* + T^*$  and  $(\alpha T)^* = \overline{\alpha}T^*$ .

(ii) Let H, K be two Hilbert spaces and Y be an inner product space. If  $T \in BL(H, K)$  and  $S \in BL(K, Y)$ , prove that  $(ST)^* = T^*S^*$ . 4

\*\*\*\*\*