PG CBCS

M.SC. Semester-IV Examination, 2022

MATHEMATICS
PAPER: MTM 401
(FUNCTIONAL ANALYSIS)
Full Marks: 40
Time: 2 Hours
The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any four questions of the following:
a) Let T be a linear transformation between two normed spaces. Pro that if T is continuous at 0 then T is continuous at all points.
b) State inverse mapping theorem.
c) Let X be a normed space. Show that $x_{n} \rightarrow X$ weakly in X does not imply $x_{n} \rightarrow x$ in X in general.
d) Show that every normed space can be embedded as a dense subspace of a Banach space.
e) Let H be a Hilbert space and F be a closed subspace of H. Prove that $H=F+F^{\perp}$.
f) Let $T \in B L(H)$ be self-adjoint. Show that $\operatorname{Ker}(T)=\operatorname{Ker}\left(T^{*}\right)$.

GROUP-B

2. Answer any four questions of the following: $\quad 4 \times 4=16$

a) If $(V,\|\|$.$) is a normed space and M$ is a finite dimensional subspace of V. Prove that M is closed.
b) Show that $<A e_{j}, e_{i}>=(i+j+1)^{-1}$ for $0 \leq i, j \leq \infty$ defines a bounded operator on $l^{2}(\mathbb{N} \cup\{0\})$ with $\|A\| \leq \pi$.
c) (i) Define best approximation from a set to a point.
(ii) Let X be an inner product space and E be a convex subset of X. Prove that there exists at most one best approximation from E to any $x \in X$.
d) (i) Define adjoint operator.
(ii) Let $T \in B(H, Y)$ where H is a Hilbert space and Y is an inner product space. Prove that the adjoint T^{*} of T is the unique mapping of Y into H such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \forall x \in H$ and $y \in Y$.
e) Let $S \in B L(H)$, where H is a Hilbert space. Prove that for all $x, y \in$
$H,<S x, y>=\frac{1}{4} \sum_{n=0}^{3} i^{n}<S\left(x+i^{n} y\right),\left(x+i^{n} y\right)>$.
f) Give an example to show that the completeness of the domain is an essential requirement in the Uniform Boundedness Principle.

GROUP-C

3. Answer any two questions of the following:
a) (i) If X is a normed space, M is a closed subspace of $X, x_{0} \in X \backslash M$ and $d=\operatorname{dist}\left(x_{0}, M\right)$, show that there is an $f \in X^{*}$ such that $f\left(x_{0}\right)=1, f(x)=0$ for all $x \in M$ and $|f|=d^{-1}$.
(ii) Let S be the Unilateral shift operator. Show that $S^{* n} \xrightarrow{S} 0$ but not uniformly.
b) Let, $\left\{u_{1}, u_{2}, u_{3}, \ldots\right\}$ be an orthogonal set in an inner product space X and let $k_{1}, k_{2}, k_{3}, \ldots \in \mathbb{C}$.
(i) If $\sum_{n=1}^{\infty} k_{n} u_{n}$ converges to some $x \in X$, then prove that $k_{n}=$ $\left\langle x, u_{n}\right\rangle$ and $\sum_{n=1}^{\infty}\left|k_{n}\right|^{2}<\infty$. 4
(ii) If X is a Hilbert space and $\sum_{n=1}^{\infty}\left|k_{n}\right|^{2}<\infty$, prove that $\sum_{n=1}^{\infty} k_{n} u_{n}$ converges in X. 4
c) (i) Let $S, T \in B L(H, Y)$ and $\alpha \in \mathbb{C}$, prove that $(S+T)^{*}=S^{*}+T^{*}$ and $(\alpha T)^{*}=\bar{\alpha} T^{*}$. 4
(ii) Let H, K be two Hilbert spaces and Y be an inner product space. If $T \in B L(H, K)$ and $S \in B L(K, Y)$, prove that $(S T)^{*}=T^{*} S^{*} . \quad 4$
