Total pages: 02

MCC/21/M.Sc./SEM.-II/MTM/1

ESTD 20

LIB

 $2 \times 2 = 4$

Time: 1 Hour

PG CBCS M.Sc. Semester-II Examination, 2022 (Mathematics) PAPER: MTM 206 (GENERAL TOPOLOGY)

Full Marks: 20

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any two questions:

- a) If Y is a subspace of X and Z is a subspace of Y, then show that Z is a subspace of X.
- **b**) Give an example to show that a subspace of a normal space need not be normal.
- c) Let X and X' denote a single set in the two topologies τ and τ' , respectively. Let $i: X' \to X$ be the identity function. Show that *i* is continuous if and only if τ' is finer than τ .
- d) Show that \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

2. Answer any two questions:

2×4=8

- a) Show that the topologies (\mathbb{R}, τ_l) and (\mathbb{R}, τ_k) are not comparable.
- **b**)Consider the set Y = [-1,1] as a subspace of \mathbb{R} . Which of the following sets are open in *Y*? Which are open in \mathbb{R} ?

(i)
$$A = \left\{ x : \frac{1}{2} \le |x| < 1 \right\},$$

- (ii) $B = \{x: 0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbb{Z}_+ \}.$
- c) If L is a straight-line in the plane, describe the topology L inherits as a subspace of ℝ₁ × ℝ and as a subspace of ℝ₁ × ℝ₁. In each case it is a familiar topology.
- d) In the finite complement topology on \mathbb{R} , to what point or points does the sequence $x_n = \frac{1}{n^2}$ converge?

[P.T.O]

3. Answer any <u>one</u> questions:

1×8=8

a) (i) Show that the product of two Hausdorff spaces is Hausdorff.
(ii) Let f: A → Π_{α∈J} X_α be given by the equation f(a) = (f_α(a))_{α∈J}, where f_α: A → X_α for each α. Let ∏ X_α have the product topology. Prove that f is continuous if and only if each function f_α is continuous.

[3+5]

b) (i) Let $p: X \to Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact for each $y \in Y$. Show that if X is regular, then so is Y.

(ii) Show that if X has the discrete topology, then X is totally disconnected. Does the converse hold? [3+5]

ESTD 2017 PRORE CITY COLLEN ESTD 2017 MARAL LIBRART