PG CBCS

M.Sc. Semester-II Examination, 2022
 Mathematics
 PAPER: C-MTM 204A
 (STATISTICAL AND NUMERICAL METHODS)

GROUP-A

1. Answer any four questions of the following: $\mathbf{4 \times 2 = 8}$
a) Find the median of $33,86,68,32,80,48,70,64$.
b) Prove that $(\Delta+1)(1-\nabla) \equiv 1$.
c) Suppose π is approximated as 3.14 instead of 3.14156 , find the absolute, relative and percentage errors.
d) Define null hypothesis.
e) What is the regression curve in a set of bivariate data?

f) Write down the physical significance of the correlation co-efficient.

GROUP-B

2. Answer any four questions of the following:
a) The values of function $f(x)$ are given for certain values of x :

$x:$	1.1	1.2	1.3	1.4
$f(x):$	7.831	8.728	9.697	10.744

Estimate the value of $f(x)$ for $x=1.38$ correct to three decimal places.
b) Obtain Lagrange's interpolating polynomial for $f(x)$ and find an approximate value of the function $f(x)$ at $x=0$, given that $f(-2)=$ $-5, f(-1)=-1 \& f(1)=1$.
c) Solve the following differential equation $\frac{d y}{d x}=3 x^{2}+y, \quad y(0)=0$ for
$0.1 \leq x \leq 0.5$, using Euler's method by taking $h=0.1$.
(d) Solve the system of equations by Crammer's rule:

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=2 \\
2 x_{1}+x_{2}-x_{3}=5 \\
x_{1}+3 x_{2}+2 x_{3}=5
\end{gathered}
$$

e) Explain the bisection method for computing a real root of an equation $f(x)=0$
f) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{1-0.162 \sin ^{2} \varphi} d \varphi$ by Simpson's $1 / 3$ rule, correct up to
three decimal places.

GROUP-C

3. Answer any two questions of the following: $8 \times 2=16$
a) Describes Chi-square distribution and Student's t-distriution
b) Given $\frac{d y}{d x}=x^{2}+y^{2}$ with $x=0, y=1$. Find $y(0.1)$ by fourth-order Runge-

Kutta method by taking $h=0.1$.
c) Compute correlation co-efficient, regression co-efficient between the advertisement costs (x) and sales (y) as per data given below and also find the lines of regression.
$\begin{array}{lllllllllll}\text { Advertisement costs in } & 39 & 65 & 62 & 90 & 82 & 75 & 25 & 98 & 36 & 78\end{array}$
thousand Rs. (x)
Sales in Lakhs Rs. (y) $\begin{array}{lllllllllll}47 & 53 & 58 & 86 & 62 & 68 & 60 & 91 & 51 & 84\end{array}$

