VOIN

CIT

ESTD 20

VTRAL

Time: 2 Hours

Total pages: 03

Margar .

PG CBCS M.Sc. Semester-II Examination, 2022 (Mathematics) PAPER: MTM 203 (ABSTRACT ALGEBRA AND LINEAR ALGEBRA)

Full Marks: 40

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. <u>MTM 203.1: ABSTRACT ALGEBRA</u>

M 205.1. ABSTRACT ALOEB

Marks: 20

1. Answer any two questions:

2×2=4

- a) Let $G = (\mathbb{R}, +), H = (\mathbb{Z}, +)$ and $G' = (\{z \in \mathbb{C} : |z| = 1\}, .)$. Prove that $\frac{G}{H} \cong G'$.
- b) Prove that if an ideal S of a ring with unity R contains a unit of R, then S = R.
- c) An element x in a group G is called commutator if $x = aba^{-1}b^{-1}$ for some $a, b \in G$. By H we mean the subgroup generated by all the commutators. Show that G/H is abelian.
- d) Give an example of an infinite quotient group.

2. Answer any two questions:

2×4=8

- a) Define direct product of the groups $G_1, G_2, ..., G_n$. Then show that the center of a direct product is the direct product of the centers, i.e. $Z(G_1 \times G_2 \times ... \times G_n) = Z(G_1) \times Z(G_2) \times ... \times Z(G_n)$.
- b) In a commutative ring R with unity, an ideal P is a prime ideal if and only if the quotient ring $\frac{R}{p}$ is an integral domain.
- c) Let $K \subseteq F$ be a field extension and $\alpha \in F$ be algebraic over K. Then show that there exists a unique monic irreducible polynomial $f(x) \in K[x]$ such that $f(\alpha) = 0$.
- d) If G is a group acting on a set S, and s is a fixed element of S then define stabilizer and kernel of the group action. Prove that stabilizer of the group action is a subgroup of G.

[P.T.O]

3. Answer any <u>one</u> questions:

1×8=8

a) (i) Show that if R is a principal ideal domain, then it is a unique factorization domain. Give an example to show that the converse is not true.

(ii) If $K \subseteq F \subseteq L$ is a tower of fields then show that [L: F][F: K] = [L: K]. Where [L: F] denotes the degree of L over F. [4+4]

b) Define solvable group with an appropriate example. Prove that any group G of order p^n where p is a prime number is solvable. [3+5]

MTM 203.2: LINEAR ALGEBRA Marks: 20

1. Answer any two questions:

 $2 \times 2 = 4$

- a) Let A be a real square matrix. Is A similar to a Jordan matrix? If not, give a counter example.
- b) The linear map G: $\mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by G(x,y)=(x+y, x-2y, 3x+y) is nonsingular. Find G^{-1} .
- c) Give an example of two self-adjoint transformations whose product is not self-adjoint.
- d) If T is normal and $T^3 = T^2$, show that T is idempotent. If normality of T is dropped, does the conclusion still true?

2. Answer any two questions:

2×4=8

- a) A linear operator on \mathbb{R}^2 is defined by T(x + y) = (x + 2y, x y). Find the adjoint, i.e., T^* if the inner product is standard one. If $\alpha = (1, 3)$, find $T^*(\alpha)$.
- b) Let n be a (+)ve integer and V be an (n+1)-dimensional vector space over R. If $\{e_1, e_2, ..., e_{n+1}\}$ be a basis of V and $T: V \to V$ be the linear transformation satisfying $T(e_i) = e_{i+1}$ for i = 1, 2, ..., n and $T(e_{n+1}) = 0$. Then find rank T and trace of T.
- c) Show that if A be the matrix representation of a bilinear form f then for

u, v \in V, f(u, v) = [u]^TA[v], where [u] denotes the coordinate vector of u in the given basis S.

[P.T.O]

d) Suppose T is a linear operator on an inner product space. Then T is normal if and only if its real and imaginary parts commute.

3. Answer any <u>one</u> questions:

-1923

1×8=8

a) (i) Let P_2 be a family of polynomials of degree 2 at most. Define an inner product on P_2 as $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$. Let $\{1, x, x^2\}$ be a basis of the inner product space P_2 . Find out an orthonormal basis from the basis.

(ii) Prove that a necessary and sufficient condition that an $n \times n$ matrix A over F be diagonalizable is that A as n linearly independent eigen vectors in $V_n(F)$. [4+4]

b) What do you mean by an annihilator (W⁰) of a subset W of a vector space V. Show that W⁰ is a subspace of V* (where V* be the dual space of V). Find a basis of the annihilator W⁰ of the subspace W of \mathbb{R}^4 spanned by $v_1 = (1, 2, -3, 4), v_2 = (0, 1, 4, -1)$.

