PG CBCS

M.Sc. Semester-II Examination, 2022
(Mathematics)
PAPER: MTM 202
(NUMERICAL ANALYSIS)
Full Marks: 40

Time: 2 Hours

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any four questions:

a) Express the polynomial $x^{4}-5 x^{3}+7 x$ in terms of Chebyshev polynomials.
b) Find whether the following function is spline or not?

$$
f(x)=\left\{\begin{array}{cl}
-x^{2}-2 x^{3}, & x \in[-1,0] \\
-x^{2}+2 x^{3}, & x \in[0,1]
\end{array}\right.
$$

c) State the minimax principle of polynomial interpolation.
d) Compare Gaussian quadrature and Monte-Carlo method to find integration.
e) Compare direct and iteration method to solve a system of linear equations.
f) What do you mean by single step and multi-step methods to solve an ODE?

2. Answer any four questions:

a) Analyze the stability of fourth order Runge-Kutta method for initial value ODE.
b) Use least squares method to fit the line $y=a+b x$ based on the sample $(2,1),\left(\frac{1}{6},-\frac{5}{6}\right),\left(-\frac{3}{2},-2\right)$ and $\left(-\frac{1}{3},-\frac{2}{3}\right)$. Estimate the total error.
c) Find the value of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by Gauss-Legendre four points quadrature formula. Also, calculate the absolute errors.
d) Using Milne's predictor-corrector formula find $y(0.4)$ for the following IVP $\frac{d y}{d x}=x^{2}-y ; \quad y(0)=1$ with step length $\mathrm{h}=0.1$.
e) Solve the heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the boundary conditions $u(0, t)=0, u(1, t)=2 t$ and initial condition $u(x, 0)=\frac{1}{2} x$.
f) Deduce 4-point Gauss-Legendre quadrature formula.
3. Answer any two questions:
$2 \times 8=16$
a) Describe power method for least eigenvalue. Find the largest eigenvalue in magnitude and corresponding eigenvector of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 4 & 2 \tag{3+5}\\
-2 & 0 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

b) Describe the Crank-Necolson implicit method to solve the equation: $\frac{\partial u}{\partial t}=$ $\alpha \frac{\partial^{2} u}{\partial x^{2}}$ subject to the boundary conditions $u(0, t)=f_{1}(t), u(1, t)=f_{2}(t)$ and the initial conditions $u(x, 0)=g(x)$.
c) (i) Discuss Milne's predictor-corrector formula to find the solution of $y^{\prime}=f(x y), y\left(x_{0}\right)=y_{0}$.
(ii) Find the value of $y(0.20)$ for the initial value problem $\frac{d y}{d x}=y^{2} \sin x$, $y(0)=1$ with step length $h=0.25$ using Milne's method. $\quad[3+5]$
d) Describe Lagrange's bivariate interpolation method. Hence find the value of $f(0.25,0.75)$ from the data $f(0,0)=1, f(1,0)=$ $1.732051, f(0,1)=1.414214, f(1,1)=2$.
[4+4]

