PG CBCS
M.SC. Semester-I Examination, 2022 DEPARTMENT OF MATHEMATICS

PAPER: MTM 105
(CLASSICAL AND NON-LINEAR DYNAMICS)

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any FOUR questions from the following:
 $4 \times 2=08$

a) Using Euler-Lagrange's equation, prove that the shortest distance between two points in a plane is a straight line.
b) A particle is constrained to move on the plane curve $x y=c$ under the incluence of gravity only. Obtain its Lagrange's equation of motion.
c) State the basic postulate of special theory of relativity.
d) Define Virtual work and generalized coordinates of a dynamical system.
e) Show that the following transformation is canonical $P=\frac{1}{2}\left(p^{2}+q^{2}\right), Q=$ $\tan ^{-1}\left(\frac{q}{p}\right)$.
f) Prove that the gain of Kinetic energy of a moving particle is equal to the work done by the particle.
2. Answer any FOUR questions from the following: $4 \times 4=16$
a) Find the Lagrange's equation of motion for a pendulum in spherical polar coordinates, of length l.
b) Show that the transformation

$$
Q=\log (1+\sqrt{q} \cos p), P=2 \sqrt{q}(1+\sqrt{q} \cos p) \sin p
$$

is canonical. Find the generating function $G(q, Q)$.
Then show that
(i) the transformation is canonical, and
(ii) the generating function of this transformation can be put in the form $F=-\left(e^{Q}-1\right)^{2} \tan p$.
c) Define the degrees of freedom of a dynamical system. Suppose a particle is constraint to move on a circular plane $x^{2}+y^{2}=a^{2}$. Then what would be the degree of freedom of the particle?
d) Given a mass-spring system consisting of a mass m and a linear spring of stiffness k hanging from a fixed point. Find the Lagrangian equation of motion for the system.
e) Write down the Lagrange's equations when the Lagrangian has the following form $L=\dot{q} q-\sqrt{1-\dot{q}^{2}}$. Show that the following functional $J=\int_{x_{0}}^{x_{1}} \frac{\left(1+y^{2}\right)}{y^{\prime 2}} d x$ will be extremum if $y=\sinh \left(c_{1} x+c_{2}\right)$, where c_{1}, c_{2} are arbitrary constant.

$1+3$

f) What is the effect of the Coriolis force on a particle falling freely under the action of gravity.
3. Answer any TWO questions from the following:
a) State Hamilton's principle. Use it to derive the Lagrange's equation of motion for conservative system.
b) Prove that $x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ is invariant under Lorentz transformation. Prove that $E=m c^{2}$, in relativistic mechanics.
c) Define cyclic coordinates for a dynamical system. For a dynamical system $T=\frac{1}{2}(1+2 k) \dot{\theta}^{2}+2 \dot{\theta} \dot{\varphi}+\dot{\varphi}^{2} ; V=\frac{1}{2} n^{2}\left\{(1+k) \theta^{2}+\varphi^{2}\right\}$
θ, φ are constants, n, k are positive constants. Write down the Lagrange's equation of motion and deduce that
$(\ddot{\theta}-\ddot{\varphi})+n^{2}\left(\frac{1+k}{k}\right)(\theta-\varphi)=0$
and if $\theta=\varphi, \dot{\theta}=\dot{\varphi}$ at $t=0$ then $\theta=\varphi$ for all t.
d) Prove that Poisson bracket obeys the distributive law. If X, Y, Z are three dynamical variables, then prove the following:
(i) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$
(ii) $[X, Y, Z]=Y[X, Z]+X[Y, Z]$.

