PG CBCS
M.SC. Semester-I Examination, 2022

DEPARTMENT OF MATHEMATICS
PAPER: MTM 103
(ORDINARY DIFFERENTIAL EQUATIONS \& SPECIAL FUNCTIONS)

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any FOUR questions from the following:
 $4 \times 2=08$

a) Write down the hypergeometric series represented by $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c} ; \mathrm{z})$. Prove that $F(1, b, b ; z)=\frac{1}{1-z}$.
b) Define fundamental set of solutions and fundamental matrix for system of ordinary differential equation.
c) Find all the singularities of the following differential equation and then classify them: $2 z(1-z)^{2} w^{\prime \prime}+3 z w^{\prime}+(z-2) w=0$.
d) Define Green's function of the differential operator \mathbf{L} of the nonhomogeneous differential equation: $L u(x)=f(x)$.
e) Show that $\int_{-1}^{1} P_{n}(z) d z=\left\{\begin{array}{ll}0, & n \neq 0 \\ 2, & n=0\end{array}\right.$ where the symbols have usual meaning.
f) What are Bessel's functions of order n ? State for what values of n the solutions are independent of Bessel's equation of order n .
2. Answer any FOUR questions from the following: $4 \times 4=16$
a) Show that $(n+1) P_{n+1}(z)+n P_{n-1}(z)=(2 n+1) z P_{n}(Z)$.
b) Using Green's function method, solve the following differential equation $y^{I V}(x)=1$, subject to boundary conditions $y(0)=y^{\prime}(0)=y^{\prime \prime}(1)=$ $y^{\prime \prime \prime}(1)=0$.
c) If the solution $\varphi_{1}, \varphi_{2}, \ldots \ldots, \varphi_{n}$ of the linear homogeneous vector differential equation $\frac{d X}{d t}=A(t) X(t)$ be a fundamental solution of the above and $\varphi(t)$ be a arbitrary solution of above. Then prove that φ can be expressed as linear combination of $\varphi_{1}, \varphi_{2}, \ldots \ldots, \varphi_{n}$ on $[\mathrm{a}, \mathrm{b}]$.
d) Prove that $\int_{-1}^{1} P_{m}(z) P_{n}(z) d z=\frac{2}{2 n+1} \delta_{m n}$, where $\delta_{m n}$ and $P_{n}(z)$ are the Kroneker delta and Legendre's polynomial respectively.
e) Deduce Rodrigue's formula for Legendre's polynomial.
f) Obtain the first five terms in the expansion of the following function f in terms of Legendre's polynomial $f(x)= \begin{cases}0, & \text { if }-1<x<0 \\ x, & \text { if } 0<x<1\end{cases}$

3. Answer any TWO questions from the following: $2 \times 8=16$

a) Find the series solution of Legendre's differential equation at the pt. $z=$ ∞.
b) (i) Find the general solution of the equation $2 z(1-z) \frac{d^{2} w}{d z^{2}}+\frac{d w}{d z}+$ $4 w(z)=0$ by the method of solution in series about $\mathrm{z}=0$ and show that the equation has a polynomial solution which is polynomial in z.
(ii) Show that $n P_{n}(z)=z P_{n}^{\prime}(z)-P_{n-1}^{\prime}(z)$, where $P_{n}(z)$ denotes the Legendre's Polynomial of degree n.
c) Find the general solution of the homogeneous system $\frac{d X}{d t}=$
$\left(\begin{array}{ccc}1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2\end{array}\right), X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Prove that $\frac{d}{d z}\left(J_{0}(z)\right)=-J_{1}(Z) . \quad 6+2$
d) (i) Define a self-adjoint differential equation with an example.
(ii) If α and β are the roots of the equation $J_{n}(z)=0$ then show that

