PG (CBCS)

M.SC. Semester-I Examination, 2022

MATHEMATICS
PAPER: MTM 101
(REAL ANALYSIS)

Time: 2 Hours

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any FOUR questions from the following: $\mathbf{4 \times 2 = 0 8}$
a) Let $f(x)=\sin x, x \in[a, b]$. Show that f is a function of bounded variation on $[a, b]$.
b) Show that subtraction of two complex measurable set X is measurable.
c) Define σ-algebra with an example.
d) Show that every constant function is measurable
e) If α is continuous and β is of bounded variation on $[a, b]$, show that $\int_{a}^{b} \alpha d \beta$ exists.
f) If $s_{1}, s_{2} \in L_{0}^{+}$then prove that $s_{1}+s_{2} \in L_{0}^{+}$.
2. Answer any FOUR questions from the following: $\quad \mathbf{4} \times \mathbf{4}=\mathbf{1 6}$
a) Show that the function $f(x)=x^{2} \sin \frac{\pi}{x^{2}}, x \in(0,1]$ and $f(0)=0$ is not a function of bounded function $[0,1]$.
b) Check whether the function $f(x)=|5 x-1|+|x|$ on $[0,3]$ is a function of bounded variation or not. If so, also find the variation function of f on $[0,3]$.
c) Let $[a, b]$ be a closed and bounded interval. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous functions on $[a, b]$. Show that f is a measurable function.
d) Let $f \in L^{+}$and $E \in S$ such that $\int_{E} f d \mu=0$. Prove that $f(x)=0$ for a.e. $\mu(x) \in E$.
e) Let $f_{n}: X \rightarrow \mathbb{R}^{*}$ be measurable for $n=1,2,3, \ldots \ldots$ Then show that $\lim \inf _{n \rightarrow \infty} f_{n}$ and $\inf f_{n \rightarrow \infty} f_{n}$ are measurable functions on X.
f) If $f_{n}: X \rightarrow[0, \infty]$ is measurable for $n=1,2,3, \ldots \ldots$ and $f(x)=$ $\sum_{n=1}^{\infty} f_{n}(x), x \in X$, then show that $\int f d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu$.
3. Answer any TWO questions from the following: $2 \times 8=16$
a) Let $f:[a, b] \rightarrow \mathbb{R}$ and $\alpha:[a, b] \rightarrow \mathbb{R}$ be two functions. If f is monotonic on $[a, b]$ and α is monotone and continuous on $[a, b]$ then show that f is Riemann-Stieltjes integrable with respect to α on $[a, b]$. Evaluate $\int_{0}^{4}(x-[x]) d x^{2}$.
b) (i) Let $f(x)=\frac{1}{x^{P}}$ if $0<x \leq 1$ and $f(0)=0$. Find necessary and sufficient condition on p such that $f \in L^{1}[0,1]$. Compute $\int_{0}^{1} f(x) \lambda(x) d x$ in that case.
(ii) Evaluate the following:
$\int_{-1}^{3} 7 \sin x d(x-3[x])$.
c) (i) Suppose $f: X \rightarrow[0, \infty]$ is measurable and $\varphi(E)=\int_{E} f d \mu$ for every measurable set E in X. Show that φ is a measure and $\int g d \varphi=$
$\int g f d \mu$ for every measurable function g on X with range in $[0, \infty]$.
(ii) Show that the Cantor set is a null set.
$6+2$
d) State and prove monotone convergence theorem.

