MCC/22/M.SC./SEM.-I/MTM/1

Total pages: 02

PG (CBCS) M.SC. Semester-I Examination, 2022 MATHEMATICS PAPER: MTM 101 (REAL ANALYSIS)

Full Marks: 50

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any <u>FOUR</u> questions from the following: 4×2=08

- a) Let $f(x) = \sin x$, $x \in [a, b]$. Show that f is a function of bounded variation on [a, b].
- b) Show that subtraction of two complex measurable set X is measurable.
- c) Define σ –algebra with an example.
- d) Show that every constant function is measurable
- e) If α is continuous and β is of bounded variation on [a, b], show that $\int_a^b \alpha d\beta$ exists.
- f) If $s_1, s_2 \in L_0^+$ then prove that $s_1 + s_2 \in L_0^+$.

2. Answer any <u>FOUR</u> questions from the following: 4×4=16

- a) Show that the function f(x) = x²sin π/x², x ∈ (0, 1] and f(0) = 0 is not a function of bounded function [0, 1].
- b) Check whether the function f(x) = |5x 1| + |x| on[0, 3] is a function of bounded variation or not. If so, also find the variation function of f on [0, 3].

P.T.O

- c) Let [a, b] be a closed and bounded interval. Let $f:[a, b] \to \mathbb{R}$ be continuous functions on [a, b]. Show that f is a measurable function.
- d) Let $f \in L^+$ and $E \in S$ such that $\int_E f d\mu = 0$. Prove that f(x) = 0 for a.e. $\mu(x) \in E$.
- e) Let $f_n: X \to \mathbb{R}^*$ be measurable for $n = 1, 2, 3, \dots$. Then show that $\lim \inf_{n \to \infty} f_n$ and $\inf_{n \to \infty} f_n$ are measurable functions on X.
- f) If $f_n: X \to [0, \infty]$ is measurable for $n = 1, 2, 3, \dots$ and $f(x) = \sum_{n=1}^{\infty} f_n(x), x \in X$, then show that $\int f d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$.

3. Answer any <u>TWO</u> questions from the following: 2×8=16

- a) Let f: [a, b] → ℝ and α: [a, b] → ℝ be two functions. If f is monotonic on [a, b] and α is monotone and continuous on [a, b] then show that f is Riemann-Stieltjes integrable with respect to α on [a, b]. Evaluate ∫₀⁴(x [x])dx².
- b) (i) Let $f(x) = \frac{1}{x^p}$ if $0 < x \le 1$ and f(0) = 0. Find necessary and sufficient condition on p such that $f \in L^1[0, 1]$. Compute $\int_0^1 f(x)\lambda(x)dx$ in that case.

(ii) Evaluate the following:

(iii)

- $\int_{-1}^{3} 7\sin x \, d(x-3[x]).$
- c) (i) Suppose f: X → [0,∞] is measurable and φ(E) = ∫_E fdµ for every measurable set E in X. Show that φ is a measure and ∫ gdφ = ∫ gf dµ for every measurable function g on X with range in [0,∞].

Show that the Cantor set is a null set.

d) State and prove monotone convergence theorem.

6+2

6+2