Total pages: 02

PG

M.Sc. Semester-IV Examination, 2022 CHEMISTRY

PAPER: CEM 403 (SPL PAPER)

(ADVANCED INORGANIC CHEMISTRY-II)

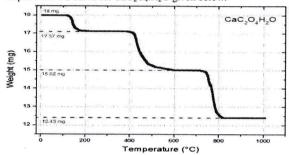
Full Marks: 40

ESTD 20;

GROUP - A

1. Answer any four questions from the following questions:

 $2\times4=8$


- a) What are the complementary and non-complementary redox reactions? Give an example of each.
- b) What are the differences between I_a and I_d mechanism?
- c) What is meant by inert and labile complexes?
- d) Write down the characteristics of the solvents used for cyclic voltammetry experiment.
- e) Write down the application of cyclic voltammetry.
- f) State the Marcus equation for outer sphere complexes.

GROUP - B

1. Answer any four questions from the following questions:

 $4 \times 4 = 16$

- a) How dropping mercury electrode is constructed? What are the advantages and disadvantages of it?
 2+2
- b) Deduce the relationship between half wave potential and standard redox potential of a system. What is the significance of half-wave potential in cyclic voltammetry? 2+2
- c) Explain the TG curve for CaC₂O₄.H₂O given below.

- d) Derive the rate law for dissociative mechanism for octahedral ligand substitution.
- e) Why Polarografic Maxima is observed? Explain with Example.
- f) Write the characteristics of 'supporting electrolyte' for the CV experiment.

(P.T.O.)

(2)

GROUP - C

2. Answer any two questions from the following questions:

 $8 \times 2 = 16$

- a) (i) "Acid catalyzed aquation reaction of chromium-ethylenediamine complex is slower than that of chromium-biguanide complex"-Explain with mechanism.
 - (ii) The rate constant and activation parameters of the aquation of some Cr and Co complexes are given bellow

Rate constants and activation parameters for aquation of L of [M(NH₃)₅L]³⁺.

		Δ5*			
L		10 ⁵ k _{aq} (s ⁻¹) (J K ⁻¹ mol ⁻¹)	ΔV* (cm³ moi⁻¹)		
M≖Cr √	H ₂ O*	5.2	0	-5.8	
	OSMe,	1.95	-15.1	-3.2	
	OCHNH,	5.1	-12.2	4.8	
	OC(NH ₂) ₂	2.0	-22.3	-8.2	

Rate constants and activation parameters for aquation of L of [M(NH₃)₅L]³⁺.

		Δ5*			
L		$10^{5}k_{sq} (s^{-1})$	(J K ⁻¹ mol ⁻¹)	ΔV* (cm³ mol-1)	
ſ	H ₂ O*	0.59	+28.1	+1.2	
M = Co {	OSMe ₂	1.8	+10.1	+2.0	
	OCHNH ₂	0.58	+12.2	+1.1	
	OC(NH ₂) ₂	5.5	-10.1	+1.3	

Propose the possible mechanism and give explanation in favour of your answer. 3+5

b) (i) The rate constant for the anation of some $\left[\text{Ti}(OH_2)_6\right]^{3^+}$ complexes are given bellow

Rate constants for anation of [Ti(OH₂)₆]³⁺ (at 13°C).

Y**-	$k \; (dm^3 \; mol^{-1} \; s^{-1})$
NCS-	8×10^{3}
	(at ca. 9°C)
CH ₃ CO ₂ -	1.8×10^{6}
CICH ₂ CO ₂ -	2.1×10^{5}

Rationalize the trends observed.

(ii)The $[Ni(bpy)_3]^{2+}$ complex follows acid catalyzed aquation reaction but $[Ni(phen)_3]^{2+}$ does not. Discuss the observation with proper mechanism.

(iii) Give mechanistic pathway for a DCB substitution reaction.

2+3+3

- c) (i) Derive the Ilkovic equation.
 - (ii) Write down the mechanistic pathway for outer sphere mechanism with a suitable example.
 - (iii) What is CFAE? State its significance.

3+3+2

- d) (i) Why oxygen should be expelled from the polarografic cell before the experiment?
 - (ii) Discuss the advantages and disadvantages of dropping Mercury electrode.
 - (iii) Sketch an instrumental layout of a modern TGA instruments.

3+3+2
