M.Sc. Semester-IV Examination, 2022

PG CBCS

CHEMISTRY
PAPER: CEM 401
(ADVANCED SPECTROSCOPY-II)

GROUP - A

1. Answer any four questions from the following questions:
a) What principle is used in mass spectroscopy?
b) What is nitrogen rule?
c) What do you mean by McLafferty rearrangement? Give an example.
d) Which type of nuclei show magnetic properties for purpose of NMR spectrosco
e) Define the coupling constant.
f) In case of OH and NH resonances in nmr, broad signals are observed. Explain.

GROUP - B

2. Answer any four questions from the following questions:

MCC/20/M.SC./SEM.-IV/CEM/1
(2)
b) How will you distinguish three isomeric butanols on the basis of mass spectroscopy?
c) An organic compound has molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$. In UV, it gave a characteristic band at $275 m \mu \varepsilon_{m a x}$ I7. In infra-red, bands are formed at 2941-2857(m), 1715(s) and $1460 \mathrm{~cm}-$ 1 (m). In NMR, three signals appear at (i) 2.48δ quartet, $(2 \mathrm{H}), 2.12 \delta$ singlet, $(3 \mathrm{H})$ and 1.07δ Triplet, $(3 \mathrm{H})$. Determine the structural formula of the compound.
d) An organic compound with molecular mass 72 absorbs at $274 \mathrm{~nm} \varepsilon_{\max } 17$.

In infra-red, a strong absorption band is formed at $1715 \mathrm{~cm}-1$ and medium absorption bands are formed at 2941-2857 cm-1 (m) and at $1460 \mathrm{~cm}-1(\mathrm{~m})$. The signals in the nuclear magnetic resonance spectrum are (i) 2.48δ quartet ($\mathrm{J}=7.3 \mathrm{cps}, 12$ squares) 2.12δ singlet (17.6 squares) and 1.07δ (Triplet) $(J=7.3 \mathrm{cps}, 18.2$ squares). Determine the structural formula of the compound.

