Total pages: 02

PG CBCS M.Sc. Semester-IV Examination, 2022 CHEMISTRY PAPER: CEM 401 (ADVANCED SPECTROSCOPY-II)

Full Marks: 40

Time: 2 Hours

<u>GROUP – A</u>

 $2 \times 4 = 8$

CEN

 $4 \times 4 = 16$

- 1. Answer any four questions from the following questions:
 - a) What principle is used in mass spectroscopy?
 - b) What is nitrogen rule?
 - c) What do you mean by McLafferty rearrangement? Give an example.
 - d) Which type of nuclei show magnetic properties for purpose of NMR spectroscopy?
 - e) Define the coupling constant.
 - f) In case of OH and NH resonances in nmr, broad signals are observed. Explain.

GROUP - B

2. Answer any four questions from the following questions:

- a) (i) What is Doppler effect?
 - (ii) Calculate Doppler shift in Mossbauer experiment, where $v_{Source} = 3.84 \times 10^{18} \text{ Hz}$ and relative velocity of source and observer is 2.2 mms⁻¹. 2+2
- b) Explain different modes of fragmentation in the mass spectroscopy.
- c) How will you distinguish between the isomeric alcohols with molecular formula C₄H₁₀O by mass spectroscopy?
- d) Acetylene protons are more shielded than ethylenic protons. Explain.
- e) Predict the number of signals for PMR and ¹³C NMR and their multiplicities for PMR spectrum of p-Nitrotiluene.
- f) Why TMS is used as a reference standard in NMR spectroscopy? How many spin state possible for ¹H nucleus? 2+2

GROUP - C

3. Answer any two questions from the following questions:

a) (i) The MB-spectrum of K₄[Fe(CN)₆] consist of one line, where as that of K₃[Fe(CN)₆] consist of two line. Draw these spectra qualitatively and account for their appearance.
(ii) Compare MB-spectrum of K₄[Fe(CN)₆] vs.[Fe(CN)₅NH₃]³⁻ and explain it. 4+4

(P.T.O.)

 $8 \times 2 = 16$

b) How will you distinguish three isomeric butanols on the basis of mass spectroscopy?

(2)

c) An organic compound has molecular formula C₄H₈O. In UV, it gave a characteristic band at 275 mµ ε_{max}17. In infra-red, bands are formed at 2941–2857 (m), 1715(s) and 1460 cm-1 (m). In NMR, three signals appear at (i) 2.48 δ quartet, (2H), 2.12 δ singlet, (3H) and 1.07 δ Triplet, (3H). Determine the structural formula of the compound.

d) An organic compound with molecular mass 72 absorbs at 274 nm ε_{max} 17.

In infra-red, a strong absorption band is formed at 1715 cm-1 and medium absorption bands are formed at 2941–2857 cm-1 (m) and at 1460 cm-1 (m). The signals in the nuclear magnetic resonance spectrum are (i) 2.48 δ quartet (J =7.3 cps, 12 squares) 2.12 δ singlet (17.6 squares) and 1.07 δ (Triplet) (J=7.3 cps, 18.2 squares). Determine the structural formula of the compound.
