MID

RECITY

FSTD 201

TRALLIB

PG CBCS M.Sc. Semester-III Examination, 2022 CHEMISTRY PAPER: CEM 301 ADVANCED SPECTROSCOPY-I (COMMON PAPER: PHYSICAL/INORGANIC/ORGANIC)

Full Marks: 40

Time: 2 Hours

GROUP – A

- 1. Answer any <u>four</u> questions from the following questions: $2 \times 4 = 8$
 - a) What is the main advantage of NQR spectroscopy?
 - b) What compounds can you analyze by EPR spectroscopy?
 - c) What is a fine and hyperfine structure?
 - d) What frequency of radiation is used for EPR spectroscopy?
 - e) What are lasers and their uses?
 - f) Why DPPH is used in ESR?
 - g) What structural information does an NQR spectrum give of a sample?
 - h) What do you mean by adiabatic ionization energy, and vertical ionization energy in photoelectron spectroscopy?

GROUP - B

2. Answer any <u>four</u> questions from the following questions: $4 \times 4 = 16$

- a) Discuss the working principle of Nuclear Quadrupole Resonance (NQR) spectroscopy.
 - b) Discuss the working principle of photoelectron spectroscopy.
 - c) Discuss about the Ruby laser.
 - d) Write general feature and properties of LASER.
 - e) The ESR spectrum of [(NH₃)₅Co-O₂-Co(NH₃)₅]⁵⁺ shows fifteen lines. Derive structural information for this complex ion from this data.
 - f) How many ESR lines can be expected for ${}^{33}S^{19}F_6$ radical anion and radical cation? I=3/2 for ${}^{33}S$, and I=1/2 for ${}^{19}F$.
 - g) [Mo(CN)₈]³⁻ complex shows a single line of ESR spectra, but when carbon(C) is replaced by ¹³C isotope we get nine lines.- Explain.

(P.T.O.)

(1)

h) A radical containing two non-equivalent protons with splitting constants 2.0 mT and 2.6 mT gives a spectrum centered on 332.5 mT. In what field do there cirry hyperfine lines lie and what are their relative intensity?

GROUP - C

3. Answer any <u>two</u> questions from the following questions: $8 \times 2 = 16$

a) Discuss each step involved for unimolecular processes and bimolecular processes in a photophysical process. (4+4)

- b) Deduce the Stern-Volmer equation. How do you obtain the quenching rate constant using the Stern-Volmer equation? (4+4)
- c) (i) Draw the ESR spectrum of DPPH radical and explain it.
 - (ii) What is the number of peaks for \cdot CH₂(OCH₃), a methoxymethyl radical in EPR due to hyperfine coupling?
 - (iii) What will be the intensity of lines in the ESR spectrum of di-tertiary butyl nitroxide (DTBN)? (3+3+2)
- d) (i) Predict the intensity distribution in the hyperfine lines in the ESR spectrum of the CD3 (I=1 for D) radical.

(ii) Draw the hyperfine splitting pattern in the ESR spectrum of $\,{}^{\circ}\mathrm{CH}_3$ radical.

(4+4)

ESTD 201

PALLIBE

(2)