Total pages: 03

PG CBCS

M.Sc. Semester-II Examination, 2022

CHEMISTRY

PAPER: CEM 203

(INORGANIC CHEMISTRY - II)

Full Marks: 40

Time: 2 Hours

GROUP-A

1. Answer any four questions of the following:

2×4=8

- a) Classify the following compounds with respect to closo, nido, arachno and hypo structure: $B_{10}H_{12}$, B_6H_{14} , $C_2B_{10}H_{12}$ [CB₁₁H₁₂]⁻
- b) NMR-spectroscopy is an useful technique to monitor fluxional behavior- Justify.
- c) The structure of cyclobutadiene itself is rectangular. However, it is almost square when coordinated to transition metal comment.
- d) Write the standard reduction formula and characterize the term involved in it.
- e) Why no polarization effect is observed for cubic or higher symmetry group?
- f) State the spectral transition selection rules.

GROUP-B

2. Answer any four questions of the following:

4×4=16

- a) What is boron neutron capture therapy? Give at least two examples of 1st and 2nd generation BNCT agents. (2+2)
- b) Propose the structure of the following compounds:

(4)

- $\text{(I) } [(\eta^5\text{-}C_5H_5)Mo(CO)_2]_2, \text{(II) } Ir_4(CO)_{12}, \text{(III) } Os_4(CO)_{16} \,, \text{(IV)}[Ru_3(CO)_{10}(PPh_3)_2]$
- c) Discuss the phenomenon of 'Carbonyl scrambling' in [FeCp(CO)₂]₂ complex.
- d) Complete the following reactions:

I. $B_4H_{10} + NaH \rightarrow$

II. $B_5H_{11} + 2CO \rightarrow$

III. $B_5H_9 + LiH$ —

IV. B₄H₁₀ + CN⁻

V. $2B_4H_{10}+2Na(Hg)+Et_2O$

VI. $B_5H_9+C_2H_4+AlCl_3 \rightarrow$

VII. $B_5H_{11} + 2Na(Hg) + Et_2O$ -

VIII. B₄H₁₀+NaBH₄ →

(P.T.O.)

e) Find the vibrational modes of NH₃ molecule using group theory. Character table for C_{3v} point group is given below:

$C_{3\nu}$	E	$2C_3$	$3\sigma_v$	Basis components	
$\overline{A_1}$	1	1	. 1	2	x^2+y^2,z^2
A ₂	1	1	-1	R_z	
E	2	-1	0	(x,y) (R_x,R_y)	$(x^2-y^2,xy)(yz,xz)$

f) Prove that the representation of direct product Γ_{AB} , will contain the totally symmetric representation if the irreducible Γ_A = irreducible Γ_B .

GROUP-C

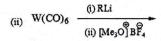
3. Answer any two questions of the following:

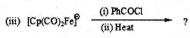
8×2=16

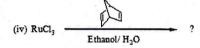
a) (I) Show that $n \to \pi^*$ electronic transition is forbidden but $\pi \to \pi^*$ transition is allowed for HCHO molecule. Character table for C_{2v} point group is given below:

	E	C ₂ (z)	σ _τ (xz)	σ _t (yz)	linear, rotations	quadratic
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	хy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

(II) What is meant by "Mutually exclusion principle"? Justify this principle using $trans-N_2F_2$ as an example. Character table for C_{2h} point group is given below: 4+4


C _{2h}	E	C_2	í	$\sigma_{\rm h}$		
$\overline{A_g}$	1	1	1	1	R _x ,	(z^2, y^2, z^2, xy)
B_g	1	-1	1	-1	R _x .R _y	xz, yz
A _u	1	1	-1	-1	z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	-1	1	x,y	


b) (I) Draw the M.O. diagram for H_2O molecule using projection operator technique. Character table for C_{2v} point group is given in the above question.


(P.T.O.)

- (II) ClO₂ molecule is trapped in a solid. Its ground state is known to be B₁. Polarised light parallel to the Y-axis (parallel to oxygen-oxygen separation) excites the molecule to an upper state. What is the symmetry of the state? 4+4
- c) Given styx number are 0911and 0630 for boron hydrides. With the help of these styx number identify and draw the probable structures of these boron hydride.
- d) (I) The cis-isomer of L₂Pd(Et)₂ decomposes immediately to give butane, but the trans isomer produces a 1:1 mixture of ethene and ethane. - Explain. 4+4 (II) Complete the following reactions:

