2022

5th Semester Examination PHYSICS (Honours)

[Quantum Mechanics and Applications]

Paper: C 11-T

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

- 1. Answer any *five* of the following questions: $2 \times 5 = 10$
 - (a) Show that the momentum operator is Hermitian. 2
 - (b) Which one of the following wave functions is a well-behaved wave function in the range $-\infty < x < \infty$? Justify your answer.

(i)
$$\psi_1 = A \exp(-x)$$

(ii)
$$\psi_2 = A \exp(-x^2)$$

(c) The operator $\left(x + \frac{d}{dx}\right)$ has the eigenvalue α . Derive the corresponding eigenfunction.

P.T.O.

2)

- (d) In case of a quantum harmonic oscillator, show that zero-point energy is equal to (1/2) ħ₀₀ using Heisenberg's uncertainty principle.
- (e) Plot the ground state and the first excited state wave functions of a linear harmonic oscillator. Also plot the corresponding probability density functions.
- (f) Two particles (masses m₁ and m₂) are attached to the ends of a massless rigid rod of length "a". The system is free to rotate in three dimensions about the (fixed) center of mass. Find out the allowed energy levels.
- (g) In the Stem-Gerlach experiment why is it necessary to use a beam of neutral atoms and not ions?
- (h) What are the values of L, S, and J and the multiplicity of the level having spectral term ${}^4P_{5/2}$?

Group - B

Answer any *four* from the following questions:

2. Set up the time-independent Schrödinger equation for the one-dimensional potential

$$V(x) = 0 \text{ for } 0 < x < L$$

 $=\infty$ elsewhere.

Write the appropriate boundary conditions. Obtain the energy eigenvalues and the corresponding eigenfunctions.

(3

ESTD 2017

1410 H

3. Determine the position probability density and the probability current density for the Gaussian wave packet

$$\psi(x,0) = A \exp\left(ikx - \frac{a^2x^2}{2}\right)$$
 2+3

- 4. Suppose a spin ½ particle is in a state : $\chi = \begin{pmatrix} 1+i \\ 2 \end{pmatrix}$. What are the probabilities of getting $\hbar/2$ and $-\hbar/2$ if you measure S_x and S_z ?
- 5. What is the most probable value of "r" in the ground state of Hydrogen? (Ground state is given by $R_{10}(r) = 2a^{-3/2} \exp(-r/a)$ What are the sources of *I*-degeneracy and *m*-degeneracy.
- (a) Show that the quantum mechanical probability of finding the linear harmonic oscillator in the ground state outside the classical limits of motion, is approximately 16%. (Given, $\int_0^1 e^{-z^2} dz \approx 0.746$)
- (b) What new information do we get from the quantum picture of a harmonic oscillator compared with the classical picture?
- 7. (a) Explain the origin of sodium D1 and D2 lines.

(b) Show that
$$\left[\hat{x}^3, p\right] = i\hbar 3\hat{x}^2$$
. 3+2

(4)

Group - C

Answer any one of the following questions:

 $10 \times 1 = 10$

8. A particle in the harmonic oscillator potential starts out in the state:

$$\psi(x,0) = A[3\psi_0(x) + 4\psi_1(x)]$$

- (a) Find A.
- (b) Construct $\psi(x,t)$.
- (c) What is the frequency of oscillation of $\psi(x,t)|^2$?
- (d) How the answer of "c" will change if $\psi(x,0) = A \left[3\psi_0(x) + 4\psi_2(x) \right] ?$ 4
- (e) What will be the average energy of the system in both the cases?
- 9. What is Larmor precession? Explain the theory of Anomalous Zeeman Effect. Why Paschen Back effect and Normal Zeeman effect have certain similarity?

3+5+2