
(d) Let $f(x)$ be a function. Describe least square method to approxiate a polynomial.
(e) Describe Gauss-elimination method for numerical solution of a system of linear equations.
(f) Evaluate y (1.0) from the differential equation $\frac{d y}{d x}=y+x^{2}$ with $y(0)=1$ taking $h=0.2$, by Euler's method correct upto two decimal places.
2. Answer any two questions :
(a) (i) Derive the Simpson $\frac{1}{3}$ integration formula in the form

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{3}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{b-a}{2^{5} \times 90} f^{(i v)}(g)
$$ where $a<g<b$. What is the error if $f(x)$ is a polynomial of degree 3 .

(ii) Find the value of $\int_{0}^{1} \frac{1}{1+x} d x$ using Simpson's $\frac{1}{3}$ rule and mid-point formula using $h=0.5$.
(b) Derive the convergence criteria for Newton-Raphson method. Also determine the order of convergence of this method.
(c) Describe power method to find the largest magnitude eigen value of a square matrix.
(d) (i) Solve the following system of equations by Gauss-seidal iteration method correct upto three significant figures :

$$
\begin{equation*}
3 x+y+z=3 ; 2 x+y+5 z=5 ; x+4 y+z=2 \tag{7}
\end{equation*}
$$

(ii) Compute the percentage error in the time period $T=2 \pi \sqrt{\frac{l}{g}}$ for $l=1 m$ if the error in the measurement of l is $0 \cdot 01$.

OR

[PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS]

Full Marks : 60

Time : 3 Hours

1. Answer any five questions:
(i) Find the order and degree of the following PDE :

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=1
$$

(ii) Form a PDE by the elimination of the arbitrary constants a, b from $z=a x+b y$.
(iii) Determine whether the equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial y^{2}}=0$ is hyperbolic, parabolic or elliptic.
(iv) Write and classify Laplace's equation.
(v) Give an example of a homogeneous linear second order PDE.
(vi) State Kepler's second law.
(vii) Write the Lagrange's auxiliary equations for the PDE $z x p+z y q=x y$.
(viii) A particle describes the curve $p^{2}=a r$ under a force F to the pole. Find the law of force.
2. Answer any four questions :
(i) Form a PDE by eliminating the function f from $z=f\left(x^{2}-y^{2}\right)$.
(ii) Using Lagrange's method solve the $\operatorname{PDE}(y+z) p+(z+x) q=x+y$.
(iii) Show that the characteristics equation of the PDE $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$ represents a family of straight lines passing through the origin.
(iv) Find the complete integral of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=a u+\frac{x y}{z}$.
(v) A particle describes a curve whose equation is $r=a \sec ^{2} \frac{\theta}{2}$ under a force to the pole. Find the law of force.
(vi) A particle describes the path $r=a \tan \theta$ under a force to the origin. Find its acceleration in terms of r.
3. Answer any three questions :
(i) Transform the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial x \partial y}+4 \frac{\partial^{2} u}{\partial y^{2}}=0$ to cannonical form and hence solve it.
(ii) Apply the method of separation of variables to obtain a formal solution $u(x, y)$ of the problem which consists of the wave equation $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=0$ with the conditions :

$$
\begin{aligned}
& u(0, y)=u(\pi, y)=0, y \geq 0 \\
& u(x, 0)=\sin 2 x, 0 \leq x \leq \pi \\
& \frac{\partial u(x, 0)}{\partial y}=0,0 \leq x \leq \pi
\end{aligned}
$$

(iii) Find the solution of the initial boundary value problem :

$$
\begin{aligned}
& u_{t t}=u_{x x}, 0<x<2, t>0 \\
& u(x, 0)=\sin \left(\frac{\pi x}{2}\right), 0 \leq x \leq 2 \\
& u_{t}(x, 0)=0,0 \leq x \leq 2 \\
& u(0, t)=0, u(2, t)=0, t \geq 0
\end{aligned}
$$

(iv) Find the solution of the cauchy problem for the first order PDE $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$ on $D=\left\{(x, y, z): x^{2}+y^{2} \neq 0, z>0\right\}$ with the initial condition $x^{2}+y^{2}=1, z=1$.
(v) Show that the path described under the inverse square law of distance will be an ellipse, a parabola or a hyperbola according as $v^{2}<=$ or $>\frac{2 \mu}{r}$.

OR

[RING THEORY AND LINEAR ALGEBRA-I]

Full Marks : 60
Time : 3 Hours

1. Answer any five questions :
(a) Let D be an integral domain and $a, b \in D$. If $a^{5}=b^{5}$ and $a^{8}=b^{8}$, prove that $a=b$.
(b) Examine whether the mapping $T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x+2 y, 2 x+y, x+y),(x, y) \in R^{2}$ is a linear mapping.
(c) Examine if the set $=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\}$, is a subspace of \mathbb{R}^{3}.
(d) Prove that in a ring R if a is an idempotent element then $1-a$ is also idempotent.
(e) Prove that \mathbb{Z} and $2 \mathbb{Z}$ are not isomorphic.
(f) In a ring R, prove that (i) $(-a)(-b)=a b$, (ii) $a(b-c)=a b-a c$ for all $a, b, c \in R$.
(g) Show that the set $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a, b \in \mathbb{Z}\right\}$ of diagonal matrices is a subring of the ring of all 2×2 matrices over \mathbb{Z}.
(h) Is $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}-x_{2}+2 x_{3}=0\right\}$ a sub-space of \mathbb{R}^{3} ? Justify.
2. Answer any four questions :
(a) Prove that the set $Z \sqrt{-5}=\{a+b \sqrt{-5}: a, b \in Z\}$ is an integral domain with usual addition '+' and multiplication '.' of two complex number.
(b) A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by $T(x, y, z)=(3 x-2 y+z, x-3 y-2 z),(x, y, z) \in \mathbb{R}^{3}$. Find the matrix of T relative to the order bases $((0,1,1),(1,0,1),(1,1,0))$ of R^{3} and $((1,0),(0,1))$ of \mathbb{R}^{2}.
(c) Let R be a commutative ring and suppose $n x=0 \forall x \in R$ where n is a prime number. Then show that the mapping $f: R \rightarrow R$ defined by $f(x)=x^{n}, x \in R$ is a homomorphism.
(d) Suppose $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ be a basis of a vector space V over a field F and a non zero vector β of V is expressed as $\beta=c_{1} \alpha_{1}+c_{2} \alpha_{2}+c_{3} \alpha_{3}+c_{4} \alpha_{4}: c_{i} \in F, \mathrm{i}=1,2,3,4$ then if $c_{4} \neq 0$, then prove that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta\right\}$ is a new basis.
(e) Show that a ring R is commutative iff $(a+b)^{2}=a^{2}+b^{2}+2 a b$ for all $a, b \in R$. Show that Z_{p} modulo p is a field if and only if p is a prime.
(f) Show that the vectors $v_{1}=(0,2,-4), v_{2}=(1,-1,1), v_{3}=(1,2,1)$ are linearly independent in $\mathbb{R}^{3}(\mathbb{R})$. If $\alpha, \beta, \gamma \in V(F)$ such that $\alpha+\beta+2 \gamma=0$, then show that $\{\alpha, \beta\}$ spans the same subspace as $\{\beta, \gamma\}$ i.e., show that $L(\{\alpha, \beta\})=L(\{\beta, \gamma\})$.
3. Answer any three questions :
(a) Determine the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that maps the basis vectors $(0,1,1)$, $(1,0,1),(1,1,0)$ of \mathbb{R}^{3} to the vectors $(2,1,1),(1,2,1),(1,1,2)$ respectively. Find $\operatorname{Ker} T$ and $\operatorname{Im} T$. Verify that $\operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Im} T=3$.
$4+2+2+2$
(b) (i) Prove that a commutative ring R with unity is an integral domain if and only if for every non-zero element a in R, $a . u=a . v \Rightarrow u=v$, where $u, v \in R$.
(ii) A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y, z)=(2 x+z, x+y+z,-3 x-z),(x, y, z) \in \mathbb{R}^{3}$. Show that T is an isomorphism. 6+4
(c) (i) Prove that in the ring of integers $(\mathbb{Z},+\cdot)$ every ideal is a principal ideal.
(ii) Let X be a non empty set. Show that the $P(X)$, the power set of X forms a commutative ring with unity under \oplus and \odot defined by $A \oplus B=(A \cup B)-(A \cap B)$ and $A \odot B=A \cap B$ where $A, B \in P(X)$. 5+5
(d) Show that in an integral domain R (with unity) the only idempotents are the zero and unity. If A is an ideal of a ring R with unity such that $1 \in A$ then show that $A=R$. Determine all the ideals of the ring of integers $(Z,+, \cdot)$. Show by an example that it is possible to have a ring R with unity where $\{0\}$ and R are the only ideals of R, but R is not a division ring.
$3+2+3+2$
(e) Prove that $L(S)$ is the smallest subspace of V, containing S. If $f: R \rightarrow R^{\prime}$ be an onto homomorphism, then R^{\prime} is isomorphic to a quotient ring of R. In fact $R^{\prime} \cong \frac{R}{\operatorname{Ker} f}$. Show that $\frac{\mathbb{Z}}{\langle 2\rangle}=\frac{5 \mathbb{Z}}{10 \mathbb{Z}}$.

OR
 [MULTIVARIATE CALCULUS]
 Full Marks : 60

 Time : 3 Hours

 Time : 3 Hours}

1. Answer any five questions :
(a) If $f(x, y)=\frac{x y}{x^{2}+y^{2}}$, does $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ exist?
(b) Find the extreme values of $f(x, y)=y^{2}-x^{2}$.
(c) Evaluate $\iint_{R} e^{-(x+y)} d x d y$ where R is the region in the first quadrant in which $x+y \leq 1$.
(d) Find the maximum rate of change of the function $f(x, y)=\sqrt{x^{2}+y^{4}}$ at the point (2,3) and the direction in which this maximum rate of change occurs.
(e) Convert the integral to cylindrical coordinates: $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x d z d y d x$.
(f) Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.
(g) Where is the function $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ continuous?
(h) Evaluate $\int_{C} x y d x+x^{2} d y$, where C is given by $y=x^{3},-1 \leq x \leq 2$.
2. Answer any four questions :
(a) Define chain rule for functions involving two independent variables. If $g(s, t)=f\left(s^{2}-t^{2}, t^{2}-s^{2}\right)$ and f is differentiable, show that g satisfies the equation $t \frac{\partial g}{\partial s}+s \frac{\partial g}{\partial t}=0$.
(b) Define the gradient of the function $f(x, y)$. Find the directional derivative of the function $f(x, y)=x^{2} y^{3}-4 y$ at the point $(2,-1)$ in the direction of the vector $\bar{v}=2 \hat{i}+5 \hat{j}$.
(c) Show that the line integral $\int_{C}(y+y z) d x+\left(x+3 z^{3}+x z\right) d y+\left(9 y z^{2}+x y-1\right) d z$. is independent of the path C between $(1,1,1)$ to $(2,1,4)$.
(d) State sufficient condition for differentiability. Show that $f(x, y)=x^{2} y+x y^{3}$ is differentiable for all (x, y).
(e) Use a polar double integral to show that a sphere of radius a has volume $\frac{4}{3} \pi a^{3}$.
(f) If $\bar{F}(x, y, z)$ be a continuously differentiable vector function, then prove that

$$
\begin{equation*}
\bar{\nabla} \times(\bar{\nabla} \times \bar{F})=\bar{\nabla}(\bar{\nabla} \cdot \bar{F})-\bar{\nabla}^{2} \bar{F} \tag{5}
\end{equation*}
$$

3. Answer any three questions :
(a) (i) State and prove Stoke's theorem for curls.
(ii) Define total differential of a function $f(x, y, z)$. Determine the total differential of the function $f(x, y)=x^{2} \ln \left(3 y^{2}-2 x\right)$. $6+(2+2)$
(b) (i) State Young's theorem.
(ii) Consider the function f defined by

$$
f(x, y)=\left\{\begin{array}{cc}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { where } x^{2}+y^{2} \neq 0 \\
0, & \text { where } x^{2}+y^{2}=0
\end{array}\right.
$$

Show that $f_{x y} \neq f_{y x}$ at $(0,0)$.
(iii) Let R be the annular region lying between the two circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=5$. Evaluate the integral $\iint_{R}\left(x^{2}+y\right) d A$.
(c) (i) Changing the order of integration, show that

$$
\int_{0}^{1} d x \int_{x}^{\frac{1}{x}} \frac{y d y}{(1+x y)^{2}\left(1+y^{2}\right)}=\frac{\pi-1}{4} .
$$

(ii) Evaluate $\iiint x y z d x d y d z$ over the region $R: 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
(d) (i) State Green's Theorem in the plane.
(ii) Show that $\bar{F}(x, y, z)=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational. Find a scalar function φ such that $\bar{F}=\bar{\nabla} \varphi$.
(iii) Find the work done by the force $\bar{F}(x, y)=\left(-16 y+\sin x^{2}\right) \hat{i}+\left(4 e^{y}+3 x^{2}\right) \hat{j}$ acting along the simple closed curve $C: x^{2}+y^{2}=1, y=x, y=-x . \quad 2+4+4$
(e) (i) State the Gauss's Divergence theorem. Verify Gauss's divergence theorem for $\bar{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$.
(ii) Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_{C}(x d y-y d x)$.

