

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject : MATHEMATICS

Paper : GE 4 - T

Full Marks : 40

Time : 2 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[NUMERICAL METHODS]

- 1. Answer any *four* questions :
 - (a) (i) Deduce Newton-Cotes quadrature formula.

(ii) Evaluate :
$$\left(\frac{\Delta^2}{E}\right)x^3$$
 3+2

 $5 \times 4 = 20$

- (b) Given (n + 1) distinct points $x_0, x_1, x_2, ..., x_n$ and (n + 1) ordinates $y_0, y_1, ..., y_n$, there is a polynomial p(x) of degree $\le n$ that interpolates to y_i at $x_i, i = 0, 1, ..., n$. Prove that this polynomial is unique.
- (c) Describe the Regula-Falsi method for finding the root of the equation f(x) = 0. What are the advantages and disadvantages of this method. P.T.O.

- (d) Let f(x) be a function. Describe least square method to approxiate a polynomial.
- (e) Describe Gauss-elimination method for numerical solution of a system of linear equations.

(f) Evaluate y (1.0) from the differential equation $\frac{dy}{dx} = y + x^2$ with y(0)=1 taking *h*=0.2, by Euler's method correct up to two decimal places.

- 2. Answer any *two* questions :
 - (a) (i) Derive the Simpson $\frac{1}{3}$ integration formula in the form

$$\int_{a}^{b} f(x) dx = \frac{b-a}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] - \frac{b-a}{2^{5} \times 90} f^{(iv)}(g)$$

where a < g < b. What is the error if f(x) is a polynomial of degree 3.

- (ii) Find the value of $\int_0^1 \frac{1}{1+x} dx$ using Simpson's $\frac{1}{3}$ rule and mid-point formula using h = 0.5.
- (b) Derive the convergence criteria for Newton-Raphson method. Also determine the order of convergence of this method. 5+5
- (c) Describe power method to find the largest magnitude eigen value of a square matrix.
- (d) (i) Solve the following system of equations by Gauss-seidal iteration method correct upto three significant figures : 3x + y + z = 3; 2x + y + 5z = 5; x + 4y + z = 27
 - (ii) Compute the percentage error in the time period $T = 2\pi \sqrt{\frac{l}{g}}$ for l = 1m if the error in the measurement of *l* is 0.01.

P.T.O.

10×2=20

6

OR			
[PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS]			
Full Marks : 60			
Time : 3 Hours			
1. Ans	wer any <i>five</i> questions : $2 \times 5 = 10$		
(i)	Find the order and degree of the following PDE : $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 1$		
(ii)	Form a PDE by the elimination of the arbitrary constants a, b from $z = ax + by$.		
(iii)	Determine whether the equation $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial y^2} = 0$ is hyperbolic, parabolic or elliptic.		
(iv)	Write and classify Laplace's equation.		
(v)	Give an example of a homogeneous linear second order PDE.		
(vi)	State Kepler's second law.		
(vii)	Write the Lagrange's auxiliary equations for the PDE $zxp + zyq = xy$.		
(viii)	A particle describes the curve $p^2 = ar$ under a force F to the pole. Find the law		
	of force.		
2. Ans	wer any <i>four</i> questions : $5 \times 4 = 20$		
(i)	Form a PDE by eliminating the function <i>f</i> from $z = f(x^2 - y^2)$.		
(ii)	Using Lagrange's method solve the PDE $(y+z)p+(z+x)q = x+y$.		
(iii)	Show that the characteristics equation of the PDE $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$		
	represents a family of straight lines passing through the origin.		
	P.T.O.		

- (4)
- (iv) Find the complete integral of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = au + \frac{xy}{z}$.
- (v) A particle describes a curve whose equation is $r = a \sec^2 \frac{\theta}{2}$ under a force to the pole. Find the law of force.
- (vi) A particle describes the path $r = a \tan \theta$ under a force to the origin. Find its acceleration in terms of r.
- 3. Answer any *three* questions :
 - (i) Transform the partial differential equation $\frac{\partial^2 u}{\partial x^2} 4\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$ to cannonical form and hence solve it.
 - (ii) Apply the method of separation of variables to obtain a formal solution u(x,y) of the problem which consists of the wave equation $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} = 0$ with the conditions :

$$u(0, y) = u(\pi, y) = 0, y \ge 0$$
$$u(x, 0) = \sin 2x, 0 \le x \le \pi$$
$$\frac{\partial u(x, 0)}{\partial y} = 0, 0 \le x \le \pi$$

(iii) Find the solution of the initial boundary value problem :

$$u_{tt} = u_{xx}, 0 < x < 2, t > 0$$
$$u(x, 0) = \sin\left(\frac{\pi x}{2}\right), 0 \le x \le 2$$
$$u_t(x, 0) = 0, 0 \le x \le 2$$
$$u(0, t) = 0, u(2, t) = 0, t \ge 0$$

(iv) Find the solution of the cauchy problem for the first order PDE $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$ on $D = \{(x, y, z) : x^2 + y^2 \neq 0, z > 0\}$ with the initial condition $x^2 + y^2 = 1, z = 1$.

(v) Show that the path described under the inverse square law of distance will be an ellipse, a parabola or a hyperbola according as $v^2 < =$ or $> \frac{2\mu}{r}$.

P.T.O.

 $10 \times 3 = 30$

OR

[RING THEORY AND LINEAR ALGEBRA-I]

Full Marks : 60 Time : 3 Hours

1. Answer any *five* questions :

- (a) Let D be an integral domain and $a, b \in D$. If $a^5 = b^5$ and $a^8 = b^8$, prove that a = b.
- (b) Examine whether the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

 $T(x, y) = (x + 2y, 2x + y, x + y), (x, y) \in \mathbb{R}^2$ is a linear mapping.

- (c) Examine if the set = $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$, is a subspace of \mathbb{R}^3 .
- (d) Prove that in a ring R if a is an idempotent element then 1 a is also idempotent.
- (e) Prove that \mathbb{Z} and $2\mathbb{Z}$ are not isomorphic.
- (f) In a ring R, prove that (i) (-a)(-b) = ab, (ii) a(b-c) = ab ac for all $a, b, c \in R$.
- (g) Show that the set $\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ of diagonal matrices is a subring of the ring of all 2 × 2 matrices over \mathbb{Z} .
- (h) Is $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 + 2x_3 = 0\}$ a sub-space of \mathbb{R}^3 ? Justify.

2. Answer any *four* questions :

(a) Prove that the set $Z\sqrt{-5} = \{a+b\sqrt{-5}: a, b \in Z\}$ is an integral domain with usual addition '+' and multiplication '.' of two complex number.

(b) A linear mapping
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 is defined by
 $T(x, y, z) = (3x - 2y + z, x - 3y - 2z), (x, y, z) \in \mathbb{R}^3$. Find the matrix of *T* relative
to the order bases ((0,1,1), (1,0,1), (1,1,0)) of \mathbb{R}^3 and ((1,0), (0,1)) of \mathbb{R}^2 .

P.T.O.

 $5 \times 4 = 20$

2×5=10

- (c) Let *R* be a commutative ring and suppose $nx = 0 \forall x \in R$ where *n* is a prime number. Then show that the mapping $f: R \to R$ defined by $f(x) = x^n, x \in R$ is a homomorphism.
- (d) Suppose {α₁, α₂, α₃, α₄} be a basis of a vector space V over a field F and a non zero vector β of V is expressed as β = c₁α₁ + c₂α₂ + c₃α₃ + c₄α₄ : c_i ∈ F, i = 1,2,3,4 then if c₄ ≠ 0, then prove that {α₁, α₂, α₃, β} is a new basis.
- (e) Show that a ring R is commutative iff $(a+b)^2 = a^2 + b^2 + 2ab$ for all $a, b \in R$. Show that Z_p modulo p is a field if and only if p is a prime. 2+3
- (f) Show that the vectors $v_1 = (0, 2, -4), v_2 = (1, -1, 1), v_3 = (1, 2, 1)$ are linearly independent in $\mathbb{R}^3(\mathbb{R})$. If $\alpha, \beta, \gamma \in V(F)$ such that $\alpha + \beta + 2\gamma = 0$, then show that $\{\alpha, \beta\}$ spans the same subspace as $\{\beta, \gamma\}$ i.e., show that $L(\{\alpha, \beta\}) = L(\{\beta, \gamma\}).$ 2+3

3. Answer any *three* questions :

- (a) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 to the vectors (2, 1, 1), (1, 2, 1), (1, 1, 2) respectively. Find *Ker T* and *Im T*. Verify that dim *Ker T* + dim *Im T* = 3. 4+2+2+2
- (b) (i) Prove that a commutative ring R with unity is an integral domain if and only if for every non-zero element a in R, $a.u = a.v \implies u = v$, where $u, v \in R$.

(ii) A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

 $T(x, y, z) = (2x + z, x + y + z, -3x - z), (x, y, z) \in \mathbb{R}^3.$ Show that *T* is an isomorphism. 6+4

(c) (i) Prove that in the ring of integers $(\mathbb{Z}, + \cdot)$ every ideal is a principal ideal.

 $10 \times 3 = 30$

- (ii) Let X be a non empty set. Show that the P(X), the power set of X forms a commutative ring with unity under \oplus and \odot defined by $A \oplus B = (A \cup B) (A \cap B)$ and $A \odot B = A \cap B$ where $A, B \in P(X)$. 5+5
- (d) Show that in an integral domain *R* (with unity) the only idempotents are the zero and unity. If *A* is an ideal of a ring *R* with unity such that $1 \in A$ then show that A = R. Determine all the ideals of the ring of integers $(Z, +, \cdot)$. Show by an example that it is possible to have a ring *R* with unity where $\{0\}$ and *R* are the only ideals of *R*, but *R* is not a division ring. 3+2+3+2
- (e) Prove that L(S) is the smallest subspace of V, containing S. If $f : R \to R'$ be an onto

homomorphism, then R' is isomorphic to a quotient ring of R. In fact $R' \cong \frac{R}{Ker f}$.

Show that $\frac{\mathbb{Z}}{\langle 2 \rangle} = \frac{5\mathbb{Z}}{10\mathbb{Z}}$.

3+4+3

OR

[MULTIVARIATE CALCULUS]

Full Marks : 60 Time : 3 Hours

1. Answer any *five* questions :

2×5=10

- (a) If $f(x, y) = \frac{xy}{x^2 + y^2}$, does $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$ exist?
- (b) Find the extreme values of $f(x, y) = y^2 x^2$.
- (c) Evaluate $\iint_{R} e^{-(x+y)} dx dy$ where *R* is the region in the first quadrant in which $x + y \le 1$.

(d) Find the maximum rate of change of the function $f(x, y) = \sqrt{x^2 + y^4}$ at the point (-2, 3) and the direction in which this maximum rate of change occurs.

(e) Convert the integral to cylindrical coordinates : $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x \, dx \, dy \, dx$

(f) Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1,1,3).

g) Where is the function
$$f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 continuous?

(h) Evaluate $\int_C xy \, dx + x^2 dy$, where C is given by $y = x^3, -1 \le x \le 2$.

2. Answer any *four* questions :

(a) Define chain rule for functions involving two independent variables. If $g(s,t) = f(s^2 - t^2, t^2 - s^2)$ and f is differentiable, show that g satisfies the

equation
$$t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = 0$$
. 2+3

P.T.O.

5×4=20

(c) Show that the line integral
$$\int_{C} (y + yz) dx + (x + 3z^3 + xz) dy + (9yz^2 + xy - 1) dz$$

is independent of the path C between (1,1,1) to (2,1,4).

(d) State sufficient condition for differentiability. Show that $f(x, y) = x^2y + xy^3$ is differentiable for all (x, y). 2+3

(e) Use a polar double integral to show that a sphere of radius *a* has volume $\frac{4}{3}\pi a^3$.

(f) If $\overline{F}(x, y, z)$ be a continuously differentiable vector function, then prove that $\overline{\nabla} \times (\overline{\nabla} \times \overline{F}) = \overline{\nabla} (\overline{\nabla} \cdot \overline{F}) - \overline{\nabla}^2 \overline{F}$ 5

3. Answer any *three* questions : $10 \times 3=30$

- (a) (i) State and prove Stoke's theorem for curls.
 - (ii) Define total differential of a function f(x, y, z). Determine the total differential of the function $f(x, y) = x^2 ln (3y^2 2x)$. 6+(2+2)
- (b) (i) State Young's theorem.
 - (ii) Consider the function f defined by

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{where } x^2 + y^2 \neq 0\\ 0, & \text{where } x^2 + y^2 = 0 \end{cases}$$

Show that $f_{xy} \neq f_{yx}$ at (0, 0).

P.T.O.

5

(10)

Г

	(iii)	Let <i>R</i> be the annular region lying between the two circles $x^2 + y^2 = 1$ and
		$x^{2} + y^{2} = 5$. Evaluate the integral $\iint_{R} (x^{2} + y) dA$. (1+5)+4
(c)	(i)	Changing the order of integration, show that
		$\int_0^1 dx \int_x^{\frac{1}{x}} \frac{y dy}{\left(1+xy\right)^2 \left(1+y^2\right)} = \frac{\pi-1}{4}.$
	(ii)	Evaluate $\iiint xyz dx dy dz$ over the region $R: 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$. 6+4
(d)	(i)	State Green's Theorem in the plane.
	(ii)	Show that $\overline{F}(x, y, z) = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$ is irrotational.
		Find a scalar function φ such that $\overline{F} = \overline{\nabla} \varphi$.
	(iii)	Find the work done by the force $\overline{F}(x, y) = (-16y + \sin x^2)\hat{i} + (4e^y + 3x^2)\hat{j}$
		acting along the simple closed curve $C: x^2 + y^2 = 1, y = x, y = -x$. 2+4+4
(e)	(i)	State the Gauss's Divergence theorem. Verify Gauss's divergence theorem
		for $\overline{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ taken over the region bounded by $x^2 + y^2 = 4, z = 0$ and $z = 3$.
		$x^2 + y^2 = 4, z = 0$ and $z = 3$.
	(ii)	Show that the area bounded by a simple closed curve C is given by
		$\frac{1}{2} \oint_C (x dy - y dx). \tag{1+6}+3$