2022

3rd Semester Examination MATHEMATICS (Honours)

Paper: GE 3-T

[CBCS]

Full Marks: 60

Time: Three Hours

ESTD 2017

PALLIBR

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

(Differential Equations & Vector Calculus)

- 1. Answer any ten questions from the following: 2×10=20
 - (a) If y = x is a solution of the differential equation $(x^2D^2 + xD 1)y = 0$, $D = \frac{d}{dx}$, then find it's second linearly independent solution.
 - (b) State the Principle of Superposition for homogeneous equation.
 - (c) Find the total work done in moving a particle in a force field given by $\vec{F} = 3xy\hat{i} 5z\hat{j} + 10x\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.

P.T.O.

\ 2 \ \

- given by $\vec{a} = \frac{d\vec{v}}{dt} = 12\cos 2t\hat{i} 8\sin 2t\hat{j} + 16t\hat{k}$. If the velocity \vec{v} be zero at t = 0, find \vec{v} at any time.
- (e) Determine a unit vector perpendicular to the plane of $\vec{a} = 2\hat{i} 6\hat{j} 3\hat{k}$ and $\vec{b} = 4\hat{i} + 3\hat{j} \hat{k}$.
- (f) Find the unit tangent vector at any point on the curve $x = t^2 + 1$, y = 4t 3, $2t^2 6t$.
- (g) Define Ordinary point, Singular point and Regular singular point with example.
- (h) Find the differential equation of all circles, which pass through the origin and whose center are on x-axis.
- (i) Show that the given function $f(x,y) = xy^2$ satisfy Lipschitz condition on this domain $|x| \le 1$, $|y| \le 1$.
- (j) Evaluate $\iint_{S} r n dS$, where S is a closed surface.
- (k) Find a first integral of $\frac{dy}{dx} \frac{d^2y}{dx^2} x^2y \frac{dy}{dx} = xy^2$.
- (1) Solve: $\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{xyz^2(x^2 y^2)}$.
- (m) Find the radius of convergence of the power series

$$\sum \frac{(n+1)}{(n+2)(n+3)} x^n.$$

د ،

(n) Determine whether x = 0 is an ordinary point of a regular singular point of the differential equation

$$2x^{2}\frac{d^{2}y}{dx^{2}} + 7x(x+1)\frac{dy}{dx} - 3y = 0.$$

- (o) If $\vec{r} = 3\hat{u} + 3t^2\hat{j} + 2t^3\hat{k}$, find the value of $\left| \frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3} \right|$.
- 2. Answer any *four* questions from the following $:5\times4=20$
- (a) Solve $(D^3 D^2 + 3D + 5)y = x^2 + e^x \cos 2x$.
- (b) Solve the differential equation

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = \log x(x > 0)$$
 by the method of variation parameter.

- (c) State the Green's theorem. Using this theorem evaluate the integral $\oint x^2 dx + (x + y^2) dy$ along the curve C: y = 0, y = x and $y^2 = 2 x$ in the first quadrant.
- (d) Solve the system of linear equation :

$$2\frac{dx}{dt} - 2\frac{dy}{dt} - 3x = t \text{ and } 2\frac{dx}{dt} + \frac{dy}{dt} + 3y - 2$$

(e) Find the solution to the initial value problem

$$y'' + y' - 12y = e' + e^{2t} - 1$$
; $y(0) = 1, y'(0) = 3$

P.T.O.

(f) It is given that $y_1 = x$ and $y_2 = \frac{1}{x}$ are two linear

particular integral and the general solution. equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x, x \neq 0$. Find the independent solution of the associated homogeneous

- 3. Answer any two questions from the following: 10×2=20
- (a) (i) The acceleration of a particle at any time $t \ge 0$ is given by

$$\vec{a} = \frac{d\vec{v}}{dt} = 12\cos 2t\hat{i} - 8\sin 2t\hat{j} + 16t\hat{k}.$$

If the velocity \vec{v} and displacement \vec{r} are zero at t = 0, find \vec{v} and \vec{r} at any time.

- (ii) Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2}\vec{r}}{dt^{2}} dt$, given that $\vec{r} = t\hat{i} + t^2\hat{j} + t^3\hat{k}.$ (3+3)+4
- **(b)** (i) If $\vec{F} = (xy - 3x^2)\hat{i} + (y + 2x)\hat{j} + 3xz^2\hat{k}$. evaluate the line integral $\int \overline{F} d\overline{r}$ along the curve C: the straight lines from (1, 1, 1) to (2, 1, 1) then to (2, 2, 1) and then to (2, 2, 2).

the elements of order 10 m me group

(ii) Evaluate $\iiint xyz \, dxdy \, dz$ over the region $R: 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1.$

(c) (i) Solve:
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$$
.

$$(1+yz)dx + x(z-x)dy - (1+xy)dz = 0.$$

(i) Find the power series solution of the equation is, about x = 0). $(x^2+1)y''+xy'-xy=0$ in power of x (that

(ii) Solve:
$$(D^2 - 3D + 2)y = e^x$$
.

6+4

P.T.O.

V-3/53 - 1400

6

OR

(Group Theory - I)

- 1. Answer any *ten* from the following questions: $2 \times 10 = 20$
- (a) If (G, \circ) be a group such that for a, b in G, $a \circ b = b \circ a^{-1}$ and $b \circ a = a \circ b^{-1}$. Show that $a^4 = b^4 = e$.
- (b) Let H be a subgroup of G, then prove that $K = \{xax^{-1} : x \in G, a \in H\}$ is a subgroup of G.
- (c) If (G, \circ) be a finite group of even order, then show that G has an odd number of elements of order 2.
- (d) If $\circ(H) = 6$ and $\circ(G) = 12$ where H is a subgroup of the group G, then show that H is normal in G.
- (e) If $x = (1 \ 2 \ 3)$, $y = (2 \ 4 \ 3)$, $z = (1 \ 3 \ 4)$ then find z y x.
- (f) Find all cyclic subgroups of the Klein's 4-group.
- (g) Find all the elements of order 10 in the group $(Z_{30}, +)$.
- (h) If N, M are normal in G and $\frac{G}{N} = \frac{G}{M}$, then show that N = M.

(7

(ESTO 2017)

(i) Let (G, \circ) and (G', *) be two groups and $\phi: G \to G'$ be a homomorphism. Show that $\phi(a^{-1}) = {\{\phi(a)\}}^{-1}, \forall a \in G.$

- (j) If each element in a group be its own inverse, prove that the group is abelian.
- (k) Let (G, \circ) be a group and $a, b \in G$. If $\circ(a) = 3$ and $a \circ b \circ a^{-1} = b^2$, find $\circ(b)$ if $b \neq e$.
- (I) If index of H in G be a prime number, then show that the quotient group G / H is cyclic.
- (m) Show that the group and $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic.
- (n) Let (H, \circ) be a subgroup of (G, \circ) . Then show that the identity element of (H, \circ) is the identity element of (G, \circ) .
- (o) If $G = S_3$ and $H = A_3$ then find [G : H].
- 2. Answer any *four* from the following questions: $5 \times 4 = 20$
- (a) Show that the set Q⁺, set of all positive rationals forms an abelian group under '*' defined by

$$a*b = \frac{ab}{2}, \forall a, b \in \mathbb{Q}^+$$

& _

- (b) Let G be a group and H_1 , H_2 be two subgroups of G. Show that $H_1 \cap H_2$ is a subgroup of G, but $H_1 \cup H_2$ may not be a subgroup of G.
- (c) Show that the order of a cyclic group is same as the order of its generator.
- (d) Let G be a group in which $(ab)^3 = a^3b^3$, \forall $a, b \in G$. Prove that $H = \{x^3 : x \in G\}$ is a normal subgroup of G.
- (e) Find all homomorphisms from the group $(Z_6, +)$ to $(Z_4, +)$.
- (f) Show that every group of prime order is cyclic.
- 3. Answer any *two* from the following questions: $10 \times 2 = 20$
- (a) (i) Show that every permutation p on a finite setS is a cycle or it can be expressed as a product of disjoint cycles.
- (ii) In a group (G, \circ) , show that $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$, $\forall a, b \in G$.
- (b) (i) Let (G, \circ) be a group. Prove that a non-empty subset H of G forms a subgroup of (G, \circ) iff $a \in H$, $b \in H \Rightarrow a \circ b^{-1} \in H$.
- (ii) Show that the centre Z(G) of a group G is a normal subgroup of G.

- 9
- (c) (i) State and prove Lagrange's theorem.
- (ii) Show that any two left cosets of H in a groupG have the same cardinality.
- (d) (i) State and prove third law of isomorphism. 6
- (ii) Let $\phi:(G,\circ)\to(G',*)$ be a homomorphism. Show that ker ϕ is a normal subgroup of

MORE CITY

SOCIETION

MALLIBANA

TO 2017

TO 201

V-3/53 - 1400

(Theory of Real Functions and Introduction to Metric Space)

1. Answer any ten questions:

 $2 \times 10 = 20$

(I) State Darboux's theorem

(XIV) Show that $\lim_{x\to 0} x \cos \frac{1}{x} = 0$.

(II) Write the geometrical interpretation of Rolle's theorem

(III) Show that the function f defined by $f(x) = \sin x, x \in R$ is uniformly continuous on R.

(IV) Define interior point and adherent point of a set.

(V) Does $d(x, y) = (x - y)^2$ define a metric on the set of real numbers?

(VI) If d is a metric on X, then show that $\min \{d(x, y), 1\}$ is bounded metric on X.

(VII) Prove $\cos x > x - \frac{x^2}{2}$, if $0 < x < \frac{\pi}{2}$

(VIII) State Taylor's theorem with Cauchy's form of remainder.

(IX) Define Pseudo-metric space

(X) Define metric space

(XI) Define uniform continuity

(XII) Give an example of a function which is continuous on a closed interval but not bounded there

(XIII) Prove that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Ξ

(XV) Show that sinx is continuous function for all real values of X.

2. Answer any four questions

5×4=20

(I) Verify Rolle's theorem for the function $f(x) = x^2 - 5x + 6 \text{ in } 1 \le x \le 4$

(II) Using Mean value theorem show that $\frac{x}{1+x} < \log(1+x), x > 0.$

(III) Find the expansion of the function $\log (1+x)$ indicating the range.

(IV) In the Mean value theorem

limiting value of θ as $h \to 0^+$ is $\frac{1}{2}$ according as f(x) is $\cos x$. $f(h) = f(0) + hf'(\theta h), 0 < \theta < 1$, show that the

(V) Prove that the function $f(x) = x^3 + x^2 + x + 1$ has neither a maximum nor a minimum.

V-3/53 - 1400

3. Answer any two questions:

10×2=20

- (I) State and prove Lagrange's Mean value theorem. Give its geometrical significance. 8+2
- (II) State Cauchy's mean value theorem. Calculate ξ in Cauchy's mean value theorem for the functions

$$f(x) = \sin x, g(x) = \cos x$$
, on $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$. 2+8

(III) If (X, d) is a metric space then $\left(X, \frac{d}{1+d}\right)$ is also a metric space. Prove that arbitrary intersection of a closed set in a metric space is a closed set.

4+6

(IV) Define open sphere and closed sphere. Prove that, in a metric space, any open sphere is an open set.