
(e) Prove that the product of any m consecutive integers is divisible by m.
(f) A set contains only null vector. Is it independent? Exlpain.
(g) Let P be an orthogonal matrix with $\operatorname{det}(P)=-1$. Prove that -1 is an eigen value of P.
(h) If $a \mid b$, with $\operatorname{gcd}(a, b)=1$, then show that $a \mid c$.
2. Answer any four questions :
(a) State and prove Cayley-Hamilton theorem.
(b) Find the basis and the dimension of the subspace W of R^{3} where $W=\left\{(x, y, z) \in R^{3}: x+y+z=0\right\}$.
(c) Show that the intersection of two subspaces of a vector space V over a field F is a subspace of V. Is the union of two subspaces a subspace of V ? If not, discuss the condition.
(d) Determine the conditions for which the system : $x+y+z=b ; 2 x+y+3 z=b+1$; $5 x+2 y+a z=b^{2}$ admits of (i) unique solution, (ii) no solution and (iii) many solutions.
(e) A linear mapping $T: R^{3} \rightarrow R^{3}$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3}, x_{2}+4 x_{3}, x_{1}+x_{2}+3 x_{3}\right),\left(x_{1}, x_{2}, x_{3}\right) \in R^{3} \text {, Find the matrix }
$$ relative to the order basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ of R^{3}.

(f) Show that the eigen values of a real symmetric matrix are all real.
3. Answer any three questions:
(a) (i) If n be a positive integer, prove that

$$
\frac{1}{2 \sqrt{n+1}}<\frac{1.3 .5 \ldots \ldots \ldots . .(2 n-1)}{2.4 .6 \ldots \ldots . .2 n}<\frac{1}{\sqrt{2 n+1}}
$$

(ii) Prove that the minimum value of $x^{2}+y^{2}+z^{2}$ is $\left(\frac{c}{7}\right)^{2}$ where x, y, z are positive real numbers subject to the condition $2 x+3 y+6 z=c, c$ being a constant. Find the values of x, y, z for which the minimum value is attained.
(b) (i) If $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$ then prove that $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$.
(ii) Show that the roots of $(1+z)^{2 n}+(1-z)^{2 n}$ are the values of $\pm i \tan \frac{(2 r-1) \pi}{4 n}, r=1,2, \ldots \ldots, n$.
(iii) Find the value of $\sqrt[n]{i}+\sqrt[n]{-i}$.
(c) (i) Find the integers u and v such that $63 u+55 v=1$.
(ii) Prove that for all integers $n>2, n^{3}-1$ is composite.
(iii) Establish that the difference of two consecutive cubes is never divisible by 2. 2
(iv) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective mappings then show that the composite mapping $g \circ f: A \rightarrow C$ is injective.
(v) If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.
(d) (i) Solve the equation by Cardan's method : $x^{3}+9 x^{2}+15 x-25=0$.
(ii) The roots of the equation $x^{3}+p x^{2}+q x+r=0(r \neq 0)$ are α, β, γ. Find the equation whose roots are $\alpha \beta-\gamma^{2}, \beta \gamma-\alpha^{2}, \gamma \alpha-\beta^{2}$.
(e) (i) Consider a set \boldsymbol{Z} in which the relation ρ is defined by $a \rho b$ iff $3 a+4 b$ is divisible by 7 . Examine whether ρ is an equivalence relation.
(ii) Let S be a real skew symmetric matrix of order n, then prove that $\left(I_{n}+S\right)^{-1}\left(I_{n}-S\right)$ is orthogonal.

