2022

1st Semester Examination MATHEMATICS (Honours)

Paper: GE-1T

(Calculus Geometry and Differential Equation)

[CBCS] rubyo-no rustanta)

Full Marks: 60 Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A 10 only it comments of

1. Answer any ten questions:

(a) If
$$y = x^{n-1} \cdot \log x$$
; show that $y_n = \frac{(n-1)!}{x}$

- (b) Show that origin is a point of inflexion on the curve $y = x \cos 2x$.
- (c) Prove that the curve $y = e^x$ is convex to the x-axis at every point.
- (d) Find the envelope of the family of straight lines $y = mx + \sqrt{a^2m^2 + b^2}$, m being parameter.

P.T.O.

(e) If $I_n = \int_0^{\pi/4} \tan^n x \, dx$, show that $I_{n+1} - I_{n-1} = \frac{1}{n}$

- (f) Find the length of the perimeter of the astroid $x^{1/3} + y^{3/3} = a^{1/3}$.
- (g) Determine the nature of the conic presented by $9x^2 + 24xy + 16y^2 - 126x + 82y - 59 = 0$
- (h) Find the polar co-ordinate of the point whose Cartesian co-ordinates are $(\sqrt{3}, 1)$.
- (i) Find the equation to a sphere whose centre is (2, 5, 4) and which passes through the point (-1,3,2).
- (j) Define non-linear ODE of first order.
- (1+xy)y dx + (1-xy)xdy = 0 is exact. (k) Examine if the ODE
- (1) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (m) Find the equation of the cylinder whose generators guiding curve is the ellipse $2x^2 + y^2 = 1$, z = 0are parallel to the line -3x = 6y = 2z and whose
- (n) Define asymptote of a curve.
- (o) Through an example, explain singular solution of an

Group - B

2. Answer any four questions:

- (a) Find the asymptotes of the curve $x(x-y)^2-3(x^2-y^2)+8y=0$.
- (b) Show that the section of the hyperbolic paraboloid a hyperbola. $\frac{x^2-z^2}{2} = y$ by the plane 3x-3y+4z+2=0 is
- (c) Solve the ODE: $(x^2y^3 + 2xy)dy = dx$
- (d) Find a reduction formula for $\int \sin^m x \cos^n x dx$. evaluate $\int_0^{\pi/2} \sin^8 x \cos^6 x \ dx$. where m and n are positive integers. Use it to
- (e) Find a and b such that

$$\lim_{x\to 0} \frac{x(1+a\cos x) - b\sin x}{x^3} = 1$$

(f) If r_1 and r_2 be two mutually perpendicular radius vectors of the ellipse $r^2 = \frac{b}{1 - e^2 \cos^2 \theta}$, prove

that
$$\frac{1}{r_1^2} + \frac{1}{r_2^2} = \frac{1}{a^2} + \frac{1}{b^2} \cdot \left[b^2 = a^2 \left(1 - e^2 \right) \right].$$

P.T.O.

Group - C

- 3. Answer any two questions:
- 10×2=20
- (a) (i) Use suitable integrating factor to solve the ODE $x dy - y dx - \cos \frac{1}{x} = 0$.
- (ii) Show that the area bounded by one arch of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ and the x-axis is $3\pi a^2 \operatorname{sq}$
- (b) (i) Find the equation of a cone whose vertex is the point $p(\alpha, \beta, \gamma)$ and whose generating

is a rectangular hyperbola, show that the If the section of this cone by the plane x = 0lines pass through the conic $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0

- locus of P is $\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$.
- (ii) Find the equation of a sphere that passes and touches the plane 2x + 2y - z = 15. through the points (1, 0, 0), (0, 1, 0), (0, 0, 1)
- (i) State Leibnitz's theorem for n^{th} derivative of the product of two functions. Use this to solve the following problem.

(5)

When the state of the state of

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$

- (ii) If PM, PN be perpendiculars drawn from any coordinate axes, show that the envelope of point P on the curve $y = ax^3$ upon the MN is $27y + 4ax^3 = 0$
- (d) (i) Find the surface area and the volume of the ellipsoid formed by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ round its major axis.

(ii) If
$$J_n = \int_0^{\pi/2} \cos^n x dx$$
, show that $J_n = \frac{n-1}{n} J_{n-2} (n > 2)$. Hence find J_9 .