
(f) Find the equation of the tangent plane to the surface $f(x, y)=x^{2}+y^{2}+\sin x y$ at the point $(0,2,4)$.
(g) Find the surface area of a sphere by using surface of revolution.
(h) If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is irrotational.
2. Answer any four questions :
(a) State and prove the Schwartz's theorem for the equality of $f_{x y}$ and $f_{y x}$ at some point (a, b) of the domain of definition of $f(x, y)$.
(b) Express $\int_{0}^{\frac{\pi}{2}} d x \int_{0}^{\cos x} x^{2} d y$ as a double integral and evaluate it.
(c) Prove $\vec{\nabla} \times(\vec{F} \times \vec{G})=\vec{F}(\vec{\nabla} \cdot \vec{G})-\vec{F} \cdot \vec{\nabla} \vec{G}+\vec{G} \cdot \vec{\nabla} \vec{F}-\vec{G}(\vec{\nabla} \cdot \vec{F})$, where \vec{F} and \vec{G} are differentiable vector function.
(d) Find $\iint_{R} f(x, y) d x d y$, over the region R bounded by $x=y^{\frac{1}{3}}$ and $x=\sqrt{y}$ where $f(x, y)=x^{4}+y^{2}$.
(e) What is the maximum directional directional derivative of $g(x, y)=y^{2} e^{2 x}$ at $(2,-1)$ and in the direction of what unit vector does it occur?
(f) Let f and g be twice differentiable functions of one variable and let $u(x, t)=f(x+c t)+g(x-c t)$ for a constant c. Show that $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
3. Answer any three questions :
(a) (i) Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the constaint $a x+b y+c z=1(a \neq 0, b \neq 0, c \neq 0)$.
(ii) Show that $f(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)^{-\frac{1}{2}}$ is harmonic.
(b) (i) Let z be a differentiable function of x and y and let $x=r \cos \theta, y=r \sin \theta$, Prove that $\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}=\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}$.
(ii) Prove that $f(x, y)=\left\{\begin{array}{cl}\frac{x^{3}+y^{3}}{x-y}, & x \neq y \\ 0, & x=y\end{array}\right.$ is not continuous at $(0,0)$.
(c) (i) Prove that $\iiint \frac{d x d y d z}{x^{2}+y^{2}+(z-2)^{2}}=\pi\left(2-\frac{3}{2} \log 3\right)$, extended over the sphere $x^{2}+y^{2}+z^{2} \leq 1$.
(ii) Using a double integral, prove that the relation $B(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$, $\mathrm{m}, \mathrm{n}>0$.
(d) (i) Verify Stoke's theorem for the function $\vec{F}=x^{2} i-x y j$ integrated round the square in the plane $z=0$ and bounded by the lines $x=0, y=0, x=a, y$ $=a$.
(ii) Prove that $\iint\left[2 a^{2}-2 a(x+y)-\left(x^{2}+y^{2}\right)\right] d x d y=8 \pi a^{4}$, the region of integration being the interior of the circle $x^{2}+y^{2}+2 a(x+y)=2 a^{2} . \quad 6+4$
(e) (i) Evaluate $\iint_{s} \bar{A} \cdot \hat{n} d s ; \bar{A}=2 y i-z j+x^{2} k$ over the surface S of the bounded by the parabolic cylinder $y^{2}=8 x$, in the first octant bounded by the plane $y=4$ and $z=6$.
(ii) Find the directional derivative of $f(x, y)=2 x^{2}-x y+5$ at $(1,1)$ in the direction of unit vector $\left(\frac{3}{5},-\frac{4}{5}\right)$.

