

- (f) Find the equation of the tangent plane to the surface  $f(x, y) = x^2 + y^2 + \sin xy$  at the point (0, 2, 4).
- (g) Find the surface area of a sphere by using surface of revolution.
- (h) If  $\vec{A}$  and  $\vec{B}$  are irrotational, show that  $\vec{A} \times \vec{B}$  is irrotational.
- 2. Answer any *four* questions :
  - (a) State and prove the Schwartz's theorem for the equality of  $f_{xy}$  and  $f_{yx}$  at some point (a, b) of the domain of definition of f(x, y).
  - (b) Express  $\int_0^{\frac{\pi}{2}} dx \int_0^{\cos x} x^2 dy$  as a double integral and evaluate it.
  - (c) Prove  $\vec{\nabla} \times (\vec{F} \times \vec{G}) = \vec{F} (\vec{\nabla} \cdot \vec{G}) \vec{F} \cdot \vec{\nabla} \cdot \vec{G} + \vec{G} \cdot \vec{\nabla} \cdot \vec{F} \vec{G} (\vec{\nabla} \cdot \vec{F})$ , where  $\vec{F}$  and  $\vec{G}$  are differentiable vector function.
  - (d) Find  $\iint_{R} f(x, y) dx dy$ , over the region *R* bounded by  $x = y^{\frac{1}{3}}$  and  $x = \sqrt{y}$  where  $f(x, y) = x^{4} + y^{2}$ .
  - (e) What is the maximum directional directional derivative of  $g(x, y) = y^2 e^{2x}$  at (2, -1) and in the direction of what unit vector does it occur?
  - (f) Let f and g be twice differentiable functions of one variable and let u(x,t) = f(x+ct) + g(x-ct) for a constant c. Show that  $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ .
- 3. Answer any *three* questions :
  - (a) (i) Find the minimum value of  $x^2 + y^2 + z^2$  subject to the constaint  $ax + by + cz = 1 (a \neq 0, b \neq 0, c \neq 0).$ 
    - (ii) Show that  $f(x, y, z) = (x^2, y^2, z^2)^{-\frac{1}{2}}$  is harmonic. 8+2

P.T.O.

10×3=30

5×4=20

- (2)
- (b) (i) Let z be a differentiable function of x and y and let  $x = r \cos \theta$ ,  $y = r \sin \theta$ , Prove that  $\frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$ . 7

(ii) Prove that 
$$f(x, y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & x \neq y \\ 0, & x = y \end{cases}$$
 is not continuous at  $(0, 0)$ . 3

(c) (i) Prove that 
$$\iiint \frac{dxdydz}{x^2 + y^2 + (z-2)^2} = \pi \left(2 - \frac{3}{2}\log 3\right)$$
, extended over the sphere  $x^2 + y^2 + z^2 \le 1$ .

(ii) Using a double integral, prove that the relation  $B(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$ , m, n > 0. 5+5

- (d) (i) Verify Stoke's theorem for the function  $\vec{F} = x^2 i xyj$  integrated round the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = a.
  - (ii) Prove that  $\iint \left[ 2a^2 2a(x+y) (x^2 + y^2) \right] dxdy = 8\pi a^4$ , the region of integration being the interior of the circle  $x^2 + y^2 + 2a(x+y) = 2a^2$ . 6+4
- (e) (i) Evaluate  $\iint_{S} \overline{A} \cdot \hat{n} \, ds$ ;  $\overline{A} = 2yi zj + x^{2}k$  over the surface S of the bounded by the parabolic cylinder  $y^{2} = 8x$ , in the first octant bounded by the plane y = 4 and z = 6. 7
  - (ii) Find the directional derivative of  $f(x, y) = 2x^2 xy + 5$  at (1, 1) in the direction of unit vector  $\left(\frac{3}{5}, -\frac{4}{5}\right)$ .