
(d) A function f is continuous in the interval $[a, \infty)$ and $f(x) \rightarrow A(\neq 0)$ as $x \rightarrow \infty$. Can the integral $\int_{a}^{\infty} f(x) d x$ converge?
(e) Discuss the convergence of $\int_{0}^{1} e^{-x} \cdot x^{n-1} d x$.
(f) Give examples of (i) everywhere convergent power series (ii) nowhere convergent power series.
(g) Let D be a finite subset of R. If a sequence of real valued functions $\left\{f_{n}(x)\right\}_{n}$ on D converges pointwise to $f(x)$, then show that it also converges uniformly to $f(x)$.
(h) Let $\sum_{n} f_{n}(x)$ be a series of functions defined on $D(\subset R)$. Explain when this series is said to be uniformly convergent on D.
2. Answer any four questions :
(a) Find the Fourier series of the periodic function f with period 2π, where $f(x)=\left\{\begin{array}{ll}0, & -\pi<x<a \\ 1, & a \leq x \leq b \\ 0, & b<x<\pi\end{array}\right.$. Find the sum of the series at $x=4 \pi+a$ and deduce that $\sum_{n=1}^{\infty} \frac{\sin n(b-a)}{n}=\frac{\pi-(b-a)}{2}$.
(b) Evaluate $\int_{2}^{5}\left(x^{2}-x\right) d x$ by using the geometric partition of $[2,5]$ into n subintervals.
(c) Find the radius of convergence of the power series $\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{x^{n}}{n}$ and discuss its convergence at each end of the interval.
(d) Show that $\sum_{n=0}^{\infty} x^{n}$ uniformly on $[-a, a]$ where $0<a<1$, but $\sum_{n=1}^{\infty}\left[\frac{n x}{1+n^{2} x^{2}}-\frac{(n-1) x}{1+(n-1)^{2} x^{2}}\right]$ is not uniformly convergent on R.
(e) Show that $\int_{1}^{\infty} x^{m-1}(\log x)^{n} d x$ is convergent if and only if $m<0, n>-1$.
(f) Let f be a continuous function on R and define $F(x)=\int_{x-1}^{x+1} f(t) d t, x \in R$. Show that F is differentiable on R and compute F^{\prime}.
3. Answer any three questions :
(a) (i) State and prove the fundamental theorem of integral calculus.
(ii) If $0 \leq x \leq 1$ then show that $\frac{x^{2}}{\sqrt{2}} \leq \frac{x^{2}}{\sqrt{1+x}} \leq x^{2}$ and hence show that $\frac{1}{3 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} \leq \frac{1}{3}$.
(b) (i) If f is a piecewise continuous function or a bounded piecewise monotonic function on $[a, b]$, then f is R-integrable over $[a, b]$.
(ii) Show that $\int_{\pi}^{\infty} \frac{\sin x}{x} d x$ converges but not absolutely.
(c) (i) Let $\sum_{n} u_{n}(x)$ be a series of real valued function defined on $[a, b]$ and each $u_{n}(x)$ is R-integrable on $[a, b]$. If the series converges uniformly to f on $[a$, $b]$, then prove that f is R-integrable on $[a, b]$ and
$\int_{a}^{b}\left[\sum_{n=1}^{\infty} u_{n}(x)\right] d x=\sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) d x$.

Give an example to show that the condition of uniforms convergence of $\sum_{n} u_{n}(x)$ is only a sufficient condition but not necessary.
(ii) Find the region of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{3 n}}{2^{n}}$.
(d) (i) Verify that the function $y=x^{3} \sin \frac{1}{x}$ for $x \neq 0$ and $y=0$ for $x=0$ in the interval $[-\pi, \pi]$ is continuous together with its first derivative but does not satisfy the conditions of Dirchlet's theorem. Can it be expanded into a Fourier series in the interval $[-\pi, \pi]$.
(ii) Prove that the integral $\int_{0}^{\frac{\pi}{2}} \sin x \log \sin x d x$ exists and find its value.
(e) (i) Let $f_{n}(x)=|x|^{1+\frac{1}{n}}, x \in[-1,1]$. Show that $\left\{f_{n}\right\}_{n}$ is uniformly convergent on [$1,1]$. Also show that each f_{n} is differentiable on $[-1,1]$ but the limit function is not differentiable for all x in $[-1,1]$.
(ii) Prove or disprove : $\left\{\tan ^{-1} n x\right\}_{n}$ is not uniformly convergent on any interval which includes zero.

