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1. Answer any five questions : 2×5=10

(a) Let  : ,f a b R  be a bounded function and P be any partition over [a, b]. Define

lower sum L(P, f ) and upper sum U (P, f ).

(b) Let  : ,f a b R  be integrable on [a, b]. If M and m be respectively the supremum

and infimum of f on [a, b], prove that    
b

a
m b a fdx M b a    .

(c) Prove or disprove : if f is differentiable on [0, 1], the relation     
1 /

0
1 0f dx f f 

is not always true.
P.T.O.



(d) A function f is continuous in the interval [ , )a   and    0f x A   as x  .

Can the integral  
a

f x dx


  converge?

(e) Discuss the convergence of 
1 1

0
.x ne x dx  .

(f) Give examples of (i) everywhere convergent power series (ii) nowhere convergent

power series.

(g) Let D be a finite subset of R. If a sequence of real valued functions   n n
f x  on D

converges pointwise to f(x), then show that it also converges uniformly to f(x).

(h) Let  n nf x  be a series of functions defined on  D R . Explain when this

series is said to be uniformly convergent on D.

2. Answer any four questions : 5×4=20

(a) Find the Fourier series of the periodic function f with period 2, where

 
0,
1,
0,

x a
f x a x b

b x

    
  

. Find the sum of the series at 4x a   and deduce that

   
1

sin
2n

n b a b a
n





   
 .

(b) Evaluate  5 2

2
x x dx  by using the geometric partition of [2, 5] into n subintervals.

(c) Find the radius of convergence of the power series   1

1
1 .

n
n

n

x
n

 


  and discuss its

convergence at each end of the interval.

(d) Show that 
0

n

n
x



  uniformly on [–a, a] where 0 < a < 1, but

 
 2 2 21 2

1

1 1 1n

n xnx
n x n x





 
 

    
  is not uniformly convergent on R.
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(e) Show that  1

1
log

nmx x dx
   is convergent if and only if 0, 1m n   .

(f) Let f be a continuous function on R and define    
1

1
,

x

x
F x f t dt x R




  . Show

that F is differentiable on R and compute 'F .

3. Answer any three questions : 10×3=30

(a) (i) State and prove the fundamental theorem of integral calculus.

(ii) If 0 1x   then show that 
2 2

2

2 1
x x x

x
 

  and hence show that

21

0

1 1
33 2 1

x
x

 
 . 5+5

(b) (i) If f is a piecewise continuous function or a bounded piecewise monotonic

function on [a, b], then f is R ––integrable over [a, b]. 3+3

(ii) Show that 
sin x dx

x


  converges but not absolutely.. 4

(c) (i) Let  n
n

u x  be a series of real valued function defined on [a, b] and each

 nu x  is R––integrable on [a, b]. If the series converges uniformly to f on [a,

b], then prove that f is R ––integrable on [a, b] and

   
1 1

b b

n na a
n n

u x dx u x dx
 

 

    
   .

Give an example to show that the condition of uniforms convergence of  n
n

u x

is only a sufficient condition but not necessary. 5+2

(ii) Find the region of convergence of the series 
3

1 2

n

nn

x

 . 3
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(d) (i) Verify that the function 3 1siny x
x

  for 0x   and y = 0 for x = 0 in the

interval  ,   is continuous together with its first derivative but does not

satisfy the conditions of Dirchlet’s theorem. Can it be expanded into a Fourier

series in the interval  ,  . 5

(ii) Prove that the integral 2

0
sin logsinx x dx



  exists and find its value. 5

(e) (i) Let    
11

| | , 1,1n
nf x x x


   . Show that  n n

f  is uniformly convergent on [–

1, 1]. Also show that each fn is differentiable on [–1, 1] but the limit function is

not differentiable for all x in [–1, 1]. 2+2+2

(ii) Prove or disprove :  1tan
n

nx
 is not uniformly convergent on any interval

which includes zero. 4

(   4   )




