2022

3rd Semester Examination MATHEMATICS (Honours)

Paper: C 6-T
(Group Theory - I)
[CBCS]
Full Marks : 60 Time : Three Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any ten questions :
$2 \times 10=20$
(i) Define abelian group. Give example of a finite abelian group.
(ii) If G is a group of even order, then prove that it has an element $a \neq e$ such that $a^{2}=e$.
(iii) Does the set of all odd integers form a group with respect to addition? Give suitable justification.
(iv) Suppose that a group contains elements a and b such that $O(a)=4, O(b)=2$ and $a^{3} b=b a$. Find $O(a b)$.
$\left.\begin{array}{l}\text { (v) Find the order of } \alpha \beta \text {, if the permutations } \\ \alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 3 & 2 & 7 & 6 & 1 & 5\end{array}\right) \text { and } \\ \beta=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 2 & 7 & 8 & 1 & 6\end{array}\right) \\ \text { (}\end{array}\right)$.
$u(n)=\{m \in N \mid m<n,(m, n)=1\}$. Then prove that $\left(u(n), X_{n}\right)$ is a group. If $n=100$, then what is the order of $u(n)$?
(b) Define Alternating group of order n. Find all elements of A_{3}.
$5+5$
(ii) (a) State and prove Lagrange's theorem on groups. By using Lagrange's theorem prove that if H and K are subgroups whose orders are relatively prime, then show that $H \cap K=\{e\}$.
(b) How many generators are there of the cyclic group of order 8 ?
$(2+4+2)+2$
(iii) (a) Let G be a finite abelian group and let p be a prime number such that p divides order of G Then prove that G has an element of order p. (Cauchy's Theorem).
(b) Prove that any group of order four is abelian.
(iv) (a) Let $\theta: G \rightarrow G^{\prime}$ be a homomorphism of a group G onto a group G^{\prime}. Let $K=\operatorname{ker} \theta$. Then prove that K is a normal subgroup of G and $\frac{G}{K} \cong G^{\prime}$. (First Isomorphism Theorem).
(b) Let H be a subgroup of G. If $x^{2} \in H$ for all $x \in G$, then prove that H is a normal subgroup of G and G / H is commutative. $5+5$
