

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - II

Subject : MATHEMATICS

Paper : C 4 - T

[DIFFERENTIAL EQUATIONS & VECTOR CALCULUS]

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

1. Answer any *five* questions :

2×5=10

- (a) What do you mean by the indicial equation?
- (b) What is the phase plane?
- (c) If f_1, f_2, \dots, f_m are solution of mth order linear homogeneous differential equation, then show that $c_1f_1 + c_2f_2 + \dots + c_mf_m$ is also a solution of this equation.
- (d) Transform $x^3 \frac{d^3y}{dx^3} + y = 0$ into the differential equation with constant coefficients.

P.T.O.

- (e) Explain Wronskian and its properties.
- (f) Define a space curve and its tangent.

(g) Evaluate
$$\int \overline{A} \times \frac{d^2 \overline{A}}{dt^2} dt$$
.

(h) Evaluate :
$$\frac{1}{D^2 - 1} 4xe^x$$
 where $D \equiv \frac{d}{dx}$.

2. Answer any *four* questions :

- (a) Solve $z^2 \frac{d^2 y}{dz^2} 3z \frac{dy}{dz} + y = \frac{\log z \sin(\log z) + 1}{z}$.
- (b) Solve the following initial value problem by using the method of undetermined coefficients $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 9xe^{2x}$, y(0) = 5, y'(0) = 10.
- (c) Suppose $\overline{A} = x^2 yz\hat{i} 2xz^3\hat{j} + xz^2\hat{k}$ and $\overline{B} = 2z\hat{i} + y\hat{j} x^2\hat{k}$.

Find $\frac{\partial^2}{\partial x \partial y} (\overline{A} \times \overline{B})$ at (1, 0, -2).

(d) Develop the method of variation of parameter in connection with the general second order linear differential equation with variable coefficients

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = F(x).$$

(e) Solve the initial value problem : $\frac{dx}{dt} = -2x + 7y$, $\frac{dy}{dt} = 3x + 2y$; x(0) = 9 and y(0) = -1.

(f) Solve:
$$(D^2 + 2)y = x^2e^{3x} + e^x\cos 2x$$
.

P.T.O.

Answer any three questions : $10 \times 3 = 30$ 3. Find the solution of the equation $\frac{d^2x}{dt^2} - x = 2$, which satisfies the conditions (i) (a) $\frac{dx}{dt} = 3$ when t = 1 and x = 2 when t = -1. 8 (ii) Define the stable equilibrium. 2 (b) Find the power series solution in power of x of the following differential (i) equation $3x \frac{d^2y}{dx^2} - (x-2)\frac{dy}{dx} - 2y = 0$. 8 State Lipschitz condition for a function f(x, y) on D. (ii) 2 Find the equation of the tangent plane to the surface $x^2 + 2xy^2 - 3z^3 = 6$ at (c) (i) 5 the point P(1, 2, 1). Find the work done in moving a particle by the force field (ii) $\overline{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the curve defined by $x = 2t^2$, y = t, $z = 4t^2 - t$ from t = 0 to 1. 5 Given that $y = e^{2x}$ is a solution of $(2x+1)\frac{d^2y}{dx^2} - 4(x+1)\frac{dy}{dx} + 4y = 0$, find (d) (i) the linearly independent solution by reducing the order. Write the general 7 solution. Write down the solution of $\frac{d^4y}{dx^4} - 3\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 12y = 0$. (ii) 3 Find the power series solution of $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$ in powers of (x-1). (e) (i) 6 (ii) Solve $\frac{d^4y}{dx^4} + y = \cos h (4x) \sin h (3x)$. 4