
(e) Explain Wronskian and its properties.
(f) Define a space curve and its tangent.
(g) Evaluate $\int \bar{A} \times \frac{d^{2} \bar{A}}{d t^{2}} d t$.
(h) Evaluate : $\frac{1}{D^{2}-1} 4 x e^{x}$ where $D \equiv \frac{d}{d x}$.
2. Answer any four questions :
(a) Solve $z^{2} \frac{d^{2} y}{d z^{2}}-3 z \frac{d y}{d z}+y=\frac{\log z \sin (\log z)+1}{z}$.
(b) Solve the following initial value problem by using the method of undetermined co-
efficients $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=9 x e^{2 x}, y(0)=5, y^{\prime}(0)=10$.
(c) Suppose $\bar{A}=x^{2} y z \hat{i}-2 x z^{3} \hat{j}+x z^{2} \hat{k}$ and $\bar{B}=2 z \hat{i}+y \hat{j}-x^{2} \hat{k}$.

Find $\frac{\partial^{2}}{\partial x \partial y}(\bar{A} \times \bar{B})$ at $(1,0,-2)$.
(d) Develop the method of variation of parameter in connection with the general second order linear differential equation with variable coefficients

$$
a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=F(x) .
$$

(e) Solve the initial value problem : $\frac{d x}{d t}=-2 x+7 y, \frac{d y}{d t}=3 x+2 y ; x(0)=9$ and $y(0)=-1$.
(f) Solve : $\left(D^{2}+2\right) y=x^{2} e^{3 x}+e^{x} \cos 2 x$.
3. Answer any three questions :
(a) (i) Find the solution of the equation $\frac{d^{2} x}{d t^{2}}-x=2$, which satisfies the conditions $\frac{d x}{d t}=3$ when $t=1$ and $x=2$ when $t=-1$.
(ii) Define the stable equilibrium.
(b) (i) Find the power series solution in power of $x$ of the following differential equation $3 x \frac{d^{2} y}{d x^{2}}-(x-2) \frac{d y}{d x}-2 y=0$.
(ii) State Lipschitz condition for a function $f(x, y)$ on $D$.
(c) (i) Find the equation of the tangent plane to the surface $x^{2}+2 x y^{2}-3 z^{3}=6$ at the point $P(1,2,1)$.
(ii) Find the work done in moving a particle by the force field $\bar{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the curve defined by $x=2 t^{2}, y=t, z=4 t^{2}-t$ from $t=0$ to 1.
(d) (i) Given that $y=e^{2 x}$ is a solution of $(2 x+1) \frac{d^{2} y}{d x^{2}}-4(x+1) \frac{d y}{d x}+4 y=0$, find the linearly independent solution by reducing the order. Write the general solution.
(ii) Write down the solution of $\frac{d^{4} y}{d x^{4}}-3 \frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+12 y=0$.
(e) (i) Find the power series solution of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$ in powers of $(x-1)$.
(ii) Solve $\frac{d^{4} y}{d x^{4}}+y=\cos h(4 x) \sin h(3 x)$.

